
There are now >600 completely sequenced genomes of 
cellular organisms1, contributing to more than five mill
ion unique protein sequences in the publicly accessible 
databases2,3. Experimental determination of the functions 
of all these proteins would be a hugely timeconsuming 
and costly task and, in most instances, has not been  
carried out. Currently, approximately 20%, 7%, 10% 
and 1% of annotated proteins in the Homo sapiens, Mus 
musculus, Drosophila melanogaster and Caenorhabditis 
elegans genomes, respectively, have been experimentally 
characterized (traceable author source (TAS) annotations 
in Gene Ontology (GO))4. However, as the volume of data 
has increased, so too have the number and sophistication 
of computational methods for predicting function5–7. 
Knowledge of the threedimensional (3D) structure of a 
protein can also provide a crucial insight into its mode of 
action, but currently the structures of <1% of sequences 
have been experimentally solved8.

Protein function can be thought of on different inter
dependent levels and may be divided into three major 
categories: molecular function, biological process and 
cellular component (BOX 1). Molecular function describes 
activity on the molecular level, such as catalysis, whereas 
biological process describes broader functions that are 
carried out by assemblies of molecular functions, such 
as a particular metabolic pathway. Cellular component 
describes the compartment or compartments of a cell in 
which the protein performs its function. Computational 
methods exist to predict all of these aspects of function. 
Furthermore, most biological processes are carried out 
by groups of interacting proteins and these interactions 
can also be predicted in silico. Ideally, laboratory data 
should be integrated with theoretical approaches where 

possible, but the scope of this review is to focus on what 
can be achieved by exploiting sequence and structural 
data using computational means alone.

The most common and generally more accessible 
approach to function prediction is ‘inheritance through 
homology’ — that is, the knowledge that proteins with 
similar sequences frequently carry out similar functions. 
However, with the recent increase in the number of com
plete genome sequences, the possibility of establishing 
orthology has also increased. As discussed later in this 
review, this greatly improves the reliability of function 
transfer, although the coverage provided by identifiable 
orthologues tends to be small compared with that achieved 
by homologue detection. However, many of the incorrect 
annotations found in databases today are a consequence 
of the overly liberal application of inheritance through 
homology and this is compounded by the fact that the 
source of these annotations is often not given. Estimates of 
the error rate for the annotation of complete genomes vary 
from <5% to >40% depending on the types of function9,10. 
The development of computational proteinfunction  
prediction would be greatly assisted by establishing 
higherquality benchmark datasets against which to test 
the methods11. In practice, the annotations assigned to 
enzymes are more amenable to computational analysis 
and a corresponding bias is seen in the literature.

Here, we introduce some basic concepts that are 
important to function prediction and provide a guide 
to methods that are commonly used for sequencebased 
function prediction and structurebased function pre
diction. Further information for many of the programs 
included in this article can be found in Supplementary 
information S1 (table). This list is not intended to be 
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Abstract | While the number of sequenced genomes continues to grow, experimentally 
verified functional annotation of whole genomes remains patchy. Structural genomics 
projects are yielding many protein structures that have unknown function. Nevertheless, 
subsequent experimental investigation is costly and time-consuming, which makes 
computational methods for predicting protein function very attractive. There is an increasing 
number of noteworthy methods for predicting protein function from sequence and 
structural data alone, many of which are readily available to cell biologists who are aware  
of the strengths and pitfalls of each available technique.
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Paralogue 
A homologue that is the 
product of a gene duplication 
event within a species.

comprehensive, but instead focuses on those methods 
that are widely used, of high quality, and easily accessible 
at the time of writing this review.

Homology, orthology and paralogy
when considering the field of proteinfunction predic
tion, it is vital to consider the concepts of homology, 
orthology and paralogy with respect to evolutionary rela
tionships between proteins (reviewed by Fitch12). Protein 
sequences are homologous if they have descended, usu
ally with divergence, from a common ancestral sequence. 
Homologues can be further divided into orthologues and 
paralogues. Orthologues are found in different species 
and have been separated by a speciation event, rather 
than by gene duplication. Paralogues are the product 
of gene duplication within a species, but because gene 
duplication can occur before speciation, paralogues can 
also exist in different species. The additional terms out
paralogue and inparalogue refer to paralogues that arise 
before and after speciation, respectively.

These concepts are relevant to function prediction 
because orthologues are likely to occupy the same or a 
similar functional niche in different species. Conversely, 
paralogues — although they possibly still maintain con
siderable sequence similarity to their parents — are free 
to evolve new functions. Ideally, orthology and paral
ogy are determined by examining the closest common 
ancestor of any two species being compared. However, 
even if this is possible, determining orthology can still 
be complicated. For example, an orthologous gene 
could be lost from the genome while its paralogue is 
retained. Furthermore, members of multigene families 
within one genome can also exhibit functional overlap 
or even redundancy between their members. various 
approaches used to recognize orthologues are described 
further below.

Sources of annotation
when developing new methods for predicting pro
tein function or assessing functional similarities, it is 
advantageous for the functional descriptors to be easily 
computerreadable. until recently, most annotations 
were accumulated in an ad hoc fashion, usually as free 
text containing a whole spectrum of terminology and 

synonyms. Although natural language processing and 
automatic extraction of information from biological liter
ature continues to improve13, the most significant step 
forward has been in the structuring and standardization 
of annotations.

There are many excellent sources of functional 
annotations (for example, COG, Gene Ontology (GO), 
EnZYME, SwissProt, FunCat, KEGG, MetaCyc and 
reactome; see also Supplementary information S1 
(table)). One of the more comprehensive sources is the 
GO project4, which provides three structured vocabu
laries (ontologies) to describe gene products in terms 
of their associated biological processes, cellular compo
nents and molecular functions in a speciesindependent  
manner. Such vocabularies restrict descriptions to 
specific terms with uniform spelling. The controlled 
vocabularies are also structured so that they can be 
queried at different levels: for example, GO can be used 
to find all the gene products in the mouse genome that 
are involved in signal transduction, or to focus on only 
the receptor tyrosine kinases. Similarities between the 
sets of annotation terms assigned to separate proteins 
can be automatically quantified using a ‘semantic 
similarity measure’ (lord et al.14 and Schlicker et al.15), 
which accounts for the information content of different 
annotations. A useful resource for annotating enzymes 
is Enzyme Commission (EC) numbers. They comprise 
a hierarchical set of four numbers: the first number 
refers to the enzyme class (‘1’, for example, refers to oxi
doreductases); the second number refers to the type of 
bond or group that is acted on (for example, ‘4’ denotes 
an enzyme that acts on a peptide bond); and the next 
two levels give progressively more specific details of 
the catalysed reaction and its substrates. Therefore, 
two different enzymes that catalyse the same reaction 
would be annotated with the same EC number. A com
parison of functional annotation schemes is made by 
rison et al.16.

Sequence-based function prediction
unfortunately, there is no perfect protocol that can 
guarantee prediction of the correct function of a pro
tein from its sequence, but in FIG. 1 we propose a sug
gested workflow that shows how some of the methods 
described in this review might be applied sequentially 
or in parallel to maximize the functional information 
that can be predicted from sequence.

As a first step, a simple, common approach to pre
dict the function of a given protein sequence is to use  
the gateways provided by the national Center for 
biotechnology Information (nCbI) and the European 
Molecular biology laboratory–European bioinformatics 
Institute (EMbl–EbI). These resources guide the user to 
a range of curated data, including protein and domain 
family information, functional sites and function predic
tion methods. Searching with a protein accession code, 
gene name or similar term will generate a list of links to 
these resources, each of which provides user instructions. 
Furthermore, tools are being actively developed that aim 
to integrate many of these diverse resources seamlessly 
(for example, InterPro17 from EMbl–EbI).

 Box 1 | Computational approaches to protein-function prediction

Protein function can be divided into three broad areas: molecular function, biological 
process and cellular component. Molecular function describes activity at the 
molecular level, such as catalysis, which is commonly predicted through methods that 
identify homologues or orthologues. Biological process describes broader functions 
that are carried out by assemblies of molecular functions, such as a particular 
metabolic pathway. Genomic inference methods can identify the direct physical 
protein–protein interactions and indirect functional associations that are found in 
biological processes. Cellular component describes the compartment(s) of a cell  
in which the protein performs its function. This component can be predicted through 
methods that predict signal sequences, residue composition, membrane association 
or post-translational modifications (BOX 2). Within these areas there are broad 
categories of computational methods, all of which ultimately depend on experimental 
data. In this review we focus on predicting molecular function using homology, 
orthology and motifs.
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If an accession code or text search fails to locate 
the query protein at nCbI or EMbl–EbI, its sequence 
can be submitted to the basic local Alignment Search 
Tool (blAST; either blAST EbI or blAST nCbI)18. A 
blAST search compares the query sequence with protein 
sequences from various databases and if an exact match is 
not found, the search usually identifies a similar sequence 

from which it may be possible to inherit annotations. 
However, these resources provide few guidelines on when 
annotations can safely be inherited from other proteins. 
Automatic methods that perform a statistical analysis 
of the GO annotations associated with the matches can 
sometimes help to improve the accuracy of annotation 
transfer19, as can datamining approaches that also exploit 
the associations between GO terms20.

There have been many studies aimed at establishing 
sequence similarity measures for safely transferring 
function between related proteins (discussed below). 
However, genes evolve at different rates owing to both 
uneven selection pressure on their functions and the 
inherent mutation rate of different species, which means 
that it is difficult to establish a similarity measure that 
is reliable in all cases. rodents, for example, accumu
late point mutations more rapidly than apes21, and the 
evolutionary rates of proteins in different gene families22 
may vary by several orders of magnitude. Therefore, it 
is often best to exhaust the possibility of establishing 
orthology using resources such as HAMAP23, which 
contains manually defined orthologous families for 
prokaryotes (FIG. 1). In practice, however, orthology itself 
is usually inferred by using sequence methods such as 
those used in COG24 and its eukaryotic extension KOG, 
or those in InParanoid25 (for eukaryotic orthologues) 
and Orthostrapper26. COG extends the classic bidirec
tional bestmatch approach — in which two genes form 
a pair by each being the best match to the other — by 
looking for two genes from different genomes that have 
the highest level of identity both to each other and to a  
single gene from a third genome. This is taken to be  
a strong indication that they are orthologues.

However, establishing orthology is not straightforward 
and provides limited coverage. Over the past ten years, 
many new familybased resources have emerged that 
group together protein sequences or individual protein 
domains into putative evolutionary families from across 
many different sequenced genomes. Family resources 
make it easier to gauge the reliability of functional inherit
ance through homology by organizing the matches to 
putative homologues in a more informative manner 
than that obtained by a blAST search against an unstruc
tured sequence database. Salient family characteristics 
can be readily identified and spurious matches can be 
more easily filtered out. In addition, multiple consistent  
matches can improve confidence in the results, and fam
ily resources allow more distant matches to be identified. 
These approaches and other rapidly developing areas 
of bioinformatics, such as using genomic inference to 
predict protein interactions and nonhomologybased 
methods, are briefly reviewed below.

Family-based resources. Familybased resources group 
together either whole multidomain sequences or indi
vidual protein domains into putative evolutionary 
families. There are now many resources available (for 
example, the Munich Information centre for Protein 
Sequences (MIPS), Pfam, TIGrFAMs, Protonet, 
SYSTErS, ProDom, PAnTHEr, PrInTS, SMArT, 
PhyloFacts, SCOP, SuPErFAMIlY, CATH and Gene3D; 

Figure 1| Flow chart suggesting a possible strategy for molecular function 
prediction from a protein sequence and some possible outcomes. There is no 
perfect workflow that can guarantee prediction of the correct function of a protein from 
its sequence, but we propose a simplified workflow to demonstrate the use of some 
commonly used methods that are described in this review. For clarity, the workflow is 
presented as sequential steps that are intended to give a logical overview of what to try 
next if one method has failed, and the depth of prediction that could be achieved. No 
single method is guaranteed always to give the best prediction so, at each step, various 
methods should be tried and the results compared. If a BLAST search is used as a first  
step and close relatives are identified, it may be possible to identify an annotated 
orthologue and, thus, give a confident prediction of the likely molecular function. 
Finding several close relatives may make it possible to identify function-discriminating 
residues (for example, using Evolutionary Trace (ET)) or single nucleotide polymorphisms 
(SNPs) that affect function (for example, using SIFT). If the BLAST matches are more 
distant relatives or no matches are found, it may be possible to identify a function using 
family-based resources. If a functional family can be identified, it may then be possible to 
obtain a more specific prediction of protein function by identifying the subgroup that the 
sequence belongs to. Finally, if no significant match is found to a functional family, then 
clues to the function may be gained by using structural domain families that identify 
distant homologues. Motif scans can provide predictions of a different nature from the 
other more global methods of sequence comparison presented here, and can provide an 
additional starting point to carry out a parallel analysis. The methods used in this 
workflow mainly address the prediction of molecular function. Other types of method 
are described in the main text sections ‘Predicting interactions and associations’ and 
‘Non-homology-based prediction’.
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descendants represents the 
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of those descendants, with 
edge lengths sometimes 
corresponding to time 
estimates.

see also Supplementary information S1 (table) for more 
details). For some of these (such as MIPS27 and Pfam28), 
the classification of homologues with related functions 
into families is accompanied by considerable manual 
validation and biological descriptions of the families are 
also provided. The InterPro29 server has links to many 
of these resources.

Although general protein family resources such as 
Pfam can often give greater coverage than those that 
concentrate on orthologues, it is vital to remember  
that in many of the most highly populated families, 
function can diverge considerably between paralogues. 
what level of sequence similarity within a protein  
family provides a safe threshold for inheriting func
tional annotation? In an early study of CATH enzyme 
superfamilies30,31, a large proportion of homologous 
relatives (>90%) were observed to have some similarity  
in the chemistry of their reactions, and in only 25% of 
superfamilies were some distant relatives found that 
showed completely different catalytic actions. Therefore, 
in many enzyme families, identifying relatives can 
often provide some useful clues on shared functional 
characteristics. Extension of these analyses to non
enzyme families shows similar trends, although caution 
is certainly necessary25,26.

various analyses have suggested that for functional 
transferability, 40% pairwise sequence identity can be 
used as a confident threshold to transfer the first three 
digits of an EC number, but to transfer all four digits of an 
EC number with at least 90% accuracy, >60% sequence 
identity is needed32,33. lower thresholds can be used (30% 
sequence identity) for domain relatives that share similar 
multidomain contexts. Furthermore, because gene fami
lies evolve at different rates, familyspecific thresholds 
are safer and lead to higher levels of functional annota
tion in many genomes (for example, a fivefold increase 
in GO annotations in D. melanogaster).

Another approach to building protein family 
resources is sequence clustering, which can automatically 
place all sequences into groups based on some measure 
of similarity; however, the clusters tend not to be manu
ally validated. Generally, the stricter the criteria for clus
tering, the smaller the clusters and the more likely the 
proteins are to be functionally related. However, some 
sophisticated clustering methods are being developed 
that automatically identify the number of clusters that 
are required to segregate functions optimally34.

Many familybased resources are now attempting to 
overcome the problem of functional diversity between 
relatives by identifying subgroups or subfamilies with 
more specific functions within the family; for example, 
dopamine and histamine receptors might be classified as 
two subgroups or subfamilies of the Gproteincoupled 
receptor family. In some resources (such as PAnTHEr35), 
this involves considerable expert curation35, whereas 
others (for example, PhyloFacts36) exploit mainly compu
tational strategies that are based on highly specific 
sequence profiles or hidden Markov models (HMMs)36. 
The success of a resource can often be increased by 
identifying specific residues that discriminate between 
functions, as described below. 

Function-discriminating residues. In some protein 
families, ligand and proteinbinding sites can be pre
dicted using phylogenetic analysis and assessment of 
‘treedeterminant residues’37, because the functionally 
active residues are those that are most likely to have 
been conserved over evolution. Some of the most suc
cessful approaches38 use a phylogenetic tree to rank the 
residues by evolutionary importance and then map this 
ranking onto a structure if one is available. The highest
ranked residues often cluster together in 3D space and 
can be used to identify functional sites (FIG. 2). various 
servers exist to perform these analyses39–41, and some 
approaches42 are able to distinguish between residues 
that are conserved for functional reasons and those that 
have remained owing to structural constraints.

Other implementations43 combine both sequence 
similarity and species information to distinguish 
between orthologues and paralogues. The accuracy 
appears to improve by purging those sequences with 
errors (for example, sequencing errors or incomplete 
fragments of sequences) that can degrade functional site  
identification44. Alternatively, external functional clas
sifications can be overlaid on the phylogenetic tree45  
to overcome the constraints that are imposed by using 
a single tree to identify a functional property that is 
likely to arise from multiple factors. Moreover, analy
ses of functiondiscriminating residues (FDrs) can 
be exploited to predict whether a single nucleotide 
polymorphism (SnP) will affect protein function46. 
Several of these servers are listed in the Supplementary 
information S1 (table).

Other methods for identifying FDrs in protein fami
lies exploit entropybased approaches47–49 (for example, 
ProteinKeys; see also Supplementary information S1 
(table)). In these methods, it is the diversity of amino 
acids at each position in a multiple alignment that is 
assessed, rather than the likelihood of specific muta
tions. Compositional differences between subfamilies 
can thus be scored without having to impose conserva
tion. For example, the FunShift database49 documents 
functional subgroups within Pfam protein domain fami
lies using an entropybased approach. This identifies 
sites that are conserved between two subfamilies and 
those sites that have different evolutionary rates in the 
two subfamilies. EFICAz50 recognizes FDrs in enzyme 
families by an iterative procedure that progressively 
clusters related sequences into functional subfamilies 
by combining information from pairwise sequence 
comparison, recognition of FDrs in Pfam enzyme 
families and recognition of multiple PrOSITE patterns 
of high specificity to infer enzyme function. FIGURE 1 
shows how the recognition of FDrs using methods such 
as ProteinKeys and FunShift can be applied to identify 
functional subgroups within a family.

Methods that seek FDrs do not necessarily require 
family resources or phylogenetic trees, but can be 
applied to any group of putative relatives in which a mul
tiple sequence alignment or profile can be constructed. 
Clustalw51 is one of the most commonly used methods 
for doing this, although new approaches show great 
promise52–54. Analysis of residue conservation can then 
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be applied to these alignments or the profiles derived 
from them. For example, filtering of PSIblAST profiles 
for patterns of catalytic site residues in the Catalytic Site 
Atlas55 has been shown to give more specific enzymatic 
function annotations56. Similarly, PrOSITE has a new 
section (Prorule) with manually created rules that 
increase discriminatory power by providing additional 
information about amino acids that are functionally 
and/or structurally crucial.

Sequence motifs. Globular protein domain databases 
have been reviewed above but there are often large seg
ments of multidomain proteins that are disordered and 
do not intrinsically fold into a regular tertiary struc
ture. Sometimes these are just linkers between globular 
domains but often they contain functional sites such 
as protein interaction sites, cellular localization signals, 
posttranslational modification sites or cleavage sites. 
Patterns and regular expressions have been developed 
to describe and identify these short motifs, which often 
consist of only a few residues. Some motifs are also found 
within globular domains and can suggest a function 
in cases where profile methods have failed. A general 
problem with motifs, however, is that short sequence 
matches typically have low statistical significance and 
the falsepositive rate can be high. Some specialized 
motif resources (for example, PrOSITE, PrInTS (also 
a familybased resource), ElM) are summarized in 
Supplementary information S1 (table). FIGURE 1 shows 
that motif scans could be performed in parallel with the 
other prediction methods described above.

Predicting interactions and associations
Molecular biology has recently entered a new era in 
which revolutionary new experimental techniques also 
reveal the activity of proteins in space and time and 
as interacting components in complexes, pathways 
and networks. various computational approaches 
exist for predicting protein interactions using protein 
sequences57 or structures58. we now briefly review some 
promising new prediction methods that have been 
developed to address these aspects of protein func
tion. BOX 2 outlines the important contribution that 
expression data is also now making to proteinfunction 
prediction.

Inheritance through homology. Protein interactions can 
be predicted through inheritance from proteins with 
known interactions, derived from various experimental 
approaches. MIPS59 contains a manually curated yeast 
proteininteraction dataset and is often regarded as the 
gold standard of proteininteraction databases. Other 
accessible databases include DIP, IntAct, MInT, bInD, 
STrInG, SCOPPI, SnAPPIDb, iPfam, PSIMAP, PIbASE 
and 3did (see Supplementary information S1 (table) 
for descriptions). STrInG60 uses the COG database to 
automatically transfer associations to orthologous pro
tein pairs in other organisms. reconstruction of whole 
metabolic pathways and networks is also supported 
by several resources such as KEGG, MetaCyc, IMG 
and PuMA2. TrAnSPATH61 specializes in signalling  

pathways and reactome62 and the Human Protein 
reference Database63 specialize in the human genome. 
Protein interactions can also be predicted de novo by 
computational means and the main approaches are 
described below.

Figure 2 | The evolutionary trace (eT) method for 
identifying specificity residues. a | A phylogenetic tree 
of related sequences is constructed for the protein of 
interest and related proteins. Functional subgroups tend 
to form distinct branches of the tree (red). b | A sub-
alignment is constructed of sequences from those proteins 
in the same functional subgroup (those in red in part a). 
The level of conservation of columns in the alignment is 
calculated (in the alignment excerpt shown, colours 
represent a sliding scale in which the most conserved 
residues are red, those with intermediate conservation are 
green and the least conserved are blue) and conserved 
positions are mapped onto the structure or sequence of 
the unknown protein. c | A comparison of the actual 
substrate-binding residues (left panel) and predicted 
residues (right panel) when the ET method was applied to 
the ATP-grasp domain of a d-Ala–d-lactate ligase (Protein 
Data Bank entry 1EHI). It can be seen that the ET method 
achieves a close prediction of the substrate-binding site. 
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Gene neighbour methods. Gene neighbour methods64,65 
use the organization of prokaryotic genomes in which 
interacting genes are often located next to each other 
in operons and are hence cotranscribed. This can 
be extended to eukaryotes, in which interacting co
regulated genes are sometimes found to cluster in the 
genome66. A detailed analysis of genomic context using 
expression data is presented by Korbel et al.67. 

The Rosetta Stone method. The rosetta Stone method68 
is based on the observation that in some organisms, 
interacting proteins are encoded by separate genes, 
whereas in other organisms, their orthologues are fused 
into a single polypeptide chain. An example is the Trp 
synthetaseα and β subunits, which are fused in fungi 
but separate in bacteria69. It is possible that the fusion 
of interacting proteins is sometimes subject to selection 
pressure because it effectively increases their relative 
concentration and removes the requirement for their 
coregulation. More recent approaches have included 
statistical measures70 to detect these ‘gene fusion’ events 
and have focused on all homologues of fused and non
fused proteins to improve the predictive coverage, rather 
than restricting the analysis to orthologues.

Phylogenetic profiling. Phylogenetic profiling71 is based 
on the hypothesis that during evolution, functionally 
associated genes are likely to be inherited or eliminated 
in a codependent manner. Creating presence–absence 
profiles is now a common way of identifying these gene 
associations but crucially depends upon correctly deter
mining orthology, which is a nontrivial task. As a result, 
the methods tend to be more successful for prokaryotes, 
in which it is more straightforward to identify ortho
logues. recent approaches exploit domains rather than 
entire proteins72 and one method73 uses the number of 

occurrences of domain predictions for CATH struc
tural families to overcome the problem of orthology 
assignment, thus finding functional relationships in 
eukaryotes that are undetectable by the conventional 
presence–absence profile comparisons.

Tree similarity. Methods to detect similarities in phylo
genetic trees74 use sequence comparison to reveal the 
coevolution of interacting nonhomologous protein 
families. Interacting proteins often coevolve by accumu
lating correlated mutations and this can sometimes be 
seen in the correlation between the distance matrices 
that are used to construct trees for the families of the 
two proteins74. recent improvements involve attempts to 
remove any background similarity between the trees of 
two protein families caused by speciation by subtracting a 
rescaled 16S rrnA phylogenetic tree, which is considered  
to be the canonical tree of life75.

Some groups have attempted to combine these 
various approaches to predict protein interactions76.  
It is often found that the predictive power of a combined 
approach is greater than that of the components used 
individually.

Non-homology-based prediction
recent analyses of genomes77 have identified many single
ton sequences for which homology cannot be used to infer 
function. In these cases it may be possible to apply non
homologybased methods that make use of subcellular 
localization and other protein features such as membrane 
association and posttranslational modifications. Proteins 
that do not share significant global sequence similar
ity but perform similar or related functions might be 
expected to share some common features because they 
must share the same cellular machinery for modifica
tion and sorting, and operate in similar environments.  

 Box 2 | Combining functional genomics data with computational methods   

Computational methods for predicting protein interactions and functional associations (see the main text section on 
genomic inference of protein function ‘Predicting interactions and associations’) can be validated using gene expression 
data, on the basis that proteins that interact should be expressed in the same cell types or under similar conditions.  
A considerable amount of the available expression data has been annotated and made publicly available in resources 
such as ArrayExpress107. A functional association between proteins predicted by phylogenetic profiling, for example, 
could be further investigated by searching ArrayExpress using protein accession codes or other search terms.

By contrast, it is possible to start with the experimental expression data and use computational analyses to validate 
groups of genes being expressed under similar conditions or with similar expression profiles. As part of this approach,  
it can be advantageous to integrate and compare ‘local’ private expression data with related public data. A collaboration 
between ‘wet’ and ‘dry’ scientists in the ENFIN108 network is attempting to validate experimental data (such as gene 
expression and proteomics data) by combining many different computational analyses. Further experimental validation 
is then performed on genes that have been identified with high confidence by multiple prediction methods. 

The most common source of expression data is from microarray experiments but these often sacrifice specificity for 
scale, yielding large quantities of relatively low-quality data109. Thus, sophisticated computational methods are necessary 
to achieve an accurate functional interpretation of these large-scale datasets109–111. A recent example can be seen in the 
computational prediction of cancer-gene function112, which demonstrates the common approach of using statistical 
methods to generate a ranked list of overexpressed genes or lists of co-expressed genes in a profile, and then identifying 
enriched functional categories using Gene Ontology. These data can then be integrated with online protein–protein 
interaction data. The ‘Chipping Forecast’ published by Nature Genetics113 also provides a periodic guide to the analysis of 
expression data.

Proteomics data can be similarly integrated with online computational methods. A recent example is the assignment of 
function to nucleolar proteins identified by mass spectrometry in an effort to characterize the protein complexes that 
constitute the human nucleolus114.
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Compare the binding sites
of the query structure and
potential relatives in the
PDB using SiteEngine

Identify surface clefts
and binding pockets
using pvSOAR/Surfnet/
Nest analysis

Map sequence conservation 
patterns of query protein
onto the structure

No relative found

Yes

Yes

Yes

Yes

No

No

No

No

Are there any chains that are closely related to the
query structure according to CE/SSM comparisons
against the PDB?

Does the query structure match manually curated
functional-site templates according to the CSA, 
DNA-binding motif database or PDBSiteScan?

Does the query structure contain domains from
known CATH/SCOP superfamilies according
to comparisons using CATHEDRAL/DALI?

Do subsets of the query structure correspond to
motifs common to other proteins in the PDB
according to PINTS/DRESPAT?

Assigning functional annotation Analysing functional sites

TIM barrel 
Consists of eight α-helices and 
eight parallel β-strands that 
alternate along the peptide 
backbone. The structure is 
named after triose phosphate 
isomerase, a conserved 
glycolytic enzyme.

Superposition 
After equivalent residues in 
two protein structures have 
been determined, the 
coordinates of one protein can 
be transformed onto the other.

Rossmann fold 
Composed of three or more 
parallel β-strands linked by two 
α-helices and is found in 
proteins that bind nucleotides, 
such as the NAD and FMN  
co-factors.

There are various methods for the computational predic
tion of protein subcellular localization in prokaryotes78 and 
eukaryotes79. The ProtFun80 method predicts protein func
tion from posttranslational modifications and protein 
sorting signals as well as from other, simpler aspects of 
protein sequence such as length, isoelectric point and 
aminoacid composition. Another approach81 uses DnA 
microarray data from cellcycleregulated genes to show 
that protein features such as phosphorylation, glycosyla
tion, subcellular location and instability or degradation 
can also be used to distinguish these genes. lobley et al.82 
have recently demonstrated the use of patterns of native 
disorder in proteins to infer function.

Structure-based function prediction
In the remainder of this review, we explore the relation
ship between structure and function. Although protein 
structure is more conserved than sequence83, knowl
edge of the specific fold adopted by a given protein 
does not directly imply a function. For example, there 
are 27 different homologous superfamilies that adopt 
the TIM barrel fold alone, covering over 60 different  

EC classifications84. Clearly, simply identifying this 
fold in a novel structure would do little to predict its  
function reliably.

The use of structural similarity in function prediction 
also poses additional problems that arise from artefacts 
of the crystallization procedure. A range of cognate and 
noncognate ligands are used to stabilize the protein 
structure and facilitate the formation of crystals. In some 
cases, any conformational change that occurs during 
substrate binding can cause significant changes to the 
overall structure. Therefore, even structures of the same 
protein might exhibit significant structural differences 
when superposed. However, structural data can be used 
to detect proteins with similar function whose sequences 
have diverged beyond a level of similarity that can be 
reliably detected using sequence comparison methods. 
Generally, approaches to predict function from struc
ture rely on trying to find globally similar structures and 
then, if no match is found, to focus on any structural 
similarities between known or predicted functional sites. 
An outline of an approach to predicting function from 
structural data is summarized in FIG. 3.

Predicting function by protein-fold comparison. Two 
proteins that exhibit high structural similarity along 
the entire length of their aminoacid sequence are likely 
to have the same or a similar function. Several popular 
methods for aligning and quantifying this relationship 
are available as web services (for example, DAlI85, 
CE86, SSAP87, STruCTAl88 and CATHEDrAl; see 
Supplementary information S1 (table)). when assessing 
the significance of the similarity between two structures, 
it is important to take into account both the quality of 
superposition and the number of residues in the align
ment. Many common motifs, such as βmeanders, are 
observed within a range of diverse folds and, hence, 
detecting this motif is unlikely to suggest a key functional 
similarity. One advantage of structural methods is that 
they usually produce superior alignments to blAST18 
and other sequenceprofile methods when identity dips 
below 40%.

How similar must two proteins be at the structural 
level to have similar functions? An analysis of the CATH 
database84 revealed that although most domains that 
share the same fold are associated with a single function, 
a small number of ‘superfolds’ (such as the ubiquitous 
Rossmann fold) can be associated with upwards of 50 dif
ferent functions. Furthermore, these superfolds are the 
most common folds and account for >50% of domain 
sequences with predicted structures.

In highly variable superfamilies — those that exhibit 
significant structural divergence — different functions 
can evolve through the insertion of secondary structure 
elements89. Although these might originate from dispa
rate regions of the primary sequence, they tend to co
locate in the structure to produce a larger structural motif 
or surface feature that modifies the geometry of the active 
site or promotes different protein–protein interactions. 
The ATPgrasp superfamily, shown in FIG. 4, is a good 
example of this mechanism of functional change, where 
ATP binding is conserved but insertion of secondary 

Figure 3 | Flow chart suggesting a possible strategy for function prediction from a 
protein structure and some possible outcomes. We propose a simplified workflow to 
demonstrate the use of some commonly used methods to predict function from structure. 
As with sequence data, the first step is often to look for globally similar structures using 
fast comparison methods that are designed to operate at the whole-protein-chain level 
(for example, SSM and CE) from which to infer function. If no close match can be found, 
the query protein might contain previously observed structural domains of known 
function, which may be identified from protein family databases (for example, SCOP and 
CATH) using structure comparison algorithms such as CATHEDRAL and DALI. Putative 
relatives can often be verified by comparison to known functional motifs that have been 
manually curated from the literature and can be identified using PDBSiteScan or the 
Catalytic Site Atlas (CSA). If similar curated sites are not available, then automatic 
structural motifs, which are predicted to correlate with functional similarities, can be 
identified using PINTS or DRESPAT. Once the function of a protein has been inferred by 
one of these techniques, putative binding sites can be compared with a library of known 
sites, such as those implemented in pvSOAR or Surfnet and by comparing additional 
physicochemical properties such as charge and hydrophobicity using programs such as 
SiteEngine or Nest analysis. Patterns of sequence conservation, either from Evolutionary 
Trace analysis or calculated from a multiple sequence alignment, can also be mapped 
onto the query and matched structures to see if their predicted functional sites  
co-locate. PDB, Protein Data Bank.
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Superfamily 
A group of evolutionarily 
related proteins that often 
have the same overall domain 
structure, but may have 
diverged beyond recognition at 
the sequence level.

Structural template
Many methods of predicting 
function from structure involve 
listing specific residues and 
expected inter-atom distances 
in a template file, which can 
then be compared against 
other structures.

SITE record
Part of a Protein Data Bank file 
containing details of which 
residues are relevant to the 
protein function (for example, 
those involved in substrate 
binding). 

structure elements permits the two proteins to bind dif
ferent substrates. As a rule of thumb, most superfamilies 
with a high level of structural similarity also exhibit high 
functional similarity, but the data are more sparse90.

Full alignment of two protein structures is not neces
sary to produce a similarity measure that proves useful 
for functional annotation91. A recent approach scored 
the similarity of two proteins by simply comparing 
their internal residue contacts — that is, residues that  
colocate within 8–10 Å in the structure — and detected 
additional similarites over global alignment methods.

Predicting function using local 3D templates. To retain 
a specific function through evolution, the local environ
ment of a functional site must be preserved, even if other 
portions of the fold have become altered. Indeed, enzym
atic catalysis is performed by a limited set of residues 
that comprise the active site, and the specificity of DnA
binding proteins is often conferred by relatively small 
regions of positive charge on the surface of the protein 
structure. using wholefold comparison to assign func
tion is limited by the fact that small changes in a binding 
or active site can cause a divergence of function. As a 
consequence, there are several methods that focus on 
comparing smaller structural motifs associated with a 
specific function.

The Catalytic Site Atlas55 held at the EbI is a database 
of protein structures, the catalytic residues of which (up 
to six per protein) have been manually annotated from 
the literature. Annotations have been carefully expanded 
to include close relatives using conservative PSIblAST18 
profiles. Structural templates are constructed from the 
catalytic residues of the proteins in the database, and 
a fast search algorithm92 is used to compare these to 

structures of unknown function so that the EC number 
can potentially be transferred. However, recognizing the 
correct relative can be challenging. First, catalytic resi
dues can frequently move relative to one another on sub
strate binding, causing their geometry to vary between 
structures with and without bound ligands. Second, the 
probability of matching small structural templates at ran
dom is high, which creates difficulties in distinguishing 
between true and false matches. One attempt to address 
this problem compares the local environments around 
known or predicted catalytic residues and the corre
sponding residues in the matched protein93. It exploits 
the idea that the environment around the active site often 
exhibits higher sequence similarity than is evident across 
a global alignment of the query and matched structures.

related methods use similar knowledgebased 
approaches94,95 to compare functional information (SITE 
records) contained in the Protein Data bank (PDb) 
structure files (FIG. 3). However, there are no specific rules 
imposed by the PDb as to what should be contained in 
the SITE records. Consequently, these records can con
tain various data (such as information about disulphide 
bridges, residues that are implicated in binding biologi
cally irrelevant ligands, mutated residues, catalytic resi
dues and so on) and may not always be important for 
comparisons of function. 

because it is timeconsuming to manually design 
structural templates for a particular function, several 
groups have endeavoured to derive these automatically 
using novel algorithms. Some detect common structural 
motifs through pairwise comparison of sidechain pat
terns in diverse members of protein families96. These 
motifs can then be scanned to see whether they are 
present in novel structures. Other algorithms97, while 
also seeking common sidechain patterns within super
families, make no assumptions about the location or 
nature of these motifs. Hydrophobic residues are often 
excluded when constructing templates because these are 
more likely to be buried in the protein core. For many 
methods that seek small structural motifs, distinguish
ing between genuine similarities and background is  
hampered by high rates of false positives.

A recent method98 uses a novel approach. rather 
than identifying 3D templates for structurally conserved 
regions in protein families, random sequenceconserved 
residues in known enzyme structures are selected to 
build motif templates. Interestingly, the best templates 
generally contain known functional residues, although 
there are also a few additional positions that have no 
known functional role but might afford a structural  
scaffold for catalytic or binding residues.

Comparing local structural features. Analysis of the 
surface of the protein, as well as pockets such as the 
activesite cleft, can often yield information on potential 
protein–protein interactions and smallmolecule binding. 
One of the key reasons that enzymes catalyse reactions so 
effectively is that they are able to isolate their substrates 
in binding pockets or clefts, creating a unique chemical 
environment. Indeed, the active site is usually found in 
one of the two largest surface clefts99. In a similar fashion 

Figure 4 | change of protein function in the aTP-grasp superfamily by insertion 
of secondary structure elements. The structure on the right shows d-Ala–d-Ala ligase 
and the structure on the left shows biotin carboxylase (box-like geometry), both of which 
contain an ATP-grasp domain (red) with two additional domains — a small domain (dark 
blue) and the B-domain (light blue). The yellow residues are involved in ATP binding and 
the green residues represent substrate-binding residues. Despite the noticeable 
difference in size between the ATP-grasp domains, the location of the active site appears 
to be conserved in this superfamily. However, the insertion of a significant number of 
secondary structures in the ATP-grasp domain of biotin carboxylase brings about a 
change to its substrate specificity. Hence, it appears that although these two proteins 
have conserved their function during evolution with respect to ATP binding, they bind 
different substrates and have different molecular functions. Therefore, caution is always 
required when inferring function from structurally similar family members.
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De novo sequence method
A method that does not rely 
upon homology between 
sequences for transferring 
functional annotations but 
rather on the recognition of 
features such as residue 
composition and subcellular 
localization signals.

Meta-server 
In the context of this review, a 
meta-server is a gateway to a 
well-benchmarked set of 
prediction methods.

to the template searching discussed above, binding sites in 
unannotated proteins can be compared against a library 
of known sites, such as those implemented in pvSOAr100. 
related approaches attempt to improve performance by 
including comparisons of the physicochemical proper
ties of the amino acids in the binding site101. The con
servation of charge and hydrophilicity is often useful 
for picking out genuine functional homologues (using 
programs such as SiteEngine; FIG. 5). binding sites with 
similar physicochemical properties in comparable 3D 
conformations can be used to identify similar enzymatic 
functions. In a similar vein, the electrostatic surface of 
functional site (eFSite) database102 provides informa
tion about electrostaticpotential surfaces that can be 
used to identify similar patterns of charge in binding and  
interaction sites.

Molecular interactions in the cell — either between 
protein surfaces or proteins and their ligands — rely on 
electrostatic contacts between charged or polar residues. 
It is possible to apply a molecular cartography approach 
to reduce protein surfaces to a spherical map103. by com
paring mainly charged and hydrophobic residues, the 
similarity of two protein maps can be used to identify 
functional subgroups within protein families, for exam
ple, to distinguish between monomeric and tetrameric 
haemoglobin subunits. because some activesite residues 
have perturbed titration curves, a different approach is to 
identify activesite residues by using theoretical micro
scopic titration curves to model the electrostatics of the 
protein and predict pKa values of ionizable groups104.

Servers for function prediction. For the convenience of 
the general user, the ProFunc105 and ProKnow106 servers 
can be used that extract both structural and sequence 
data from a query structure to carry out functional 
annotation using several of the methods described 
above. ProFunc combines blAST and HMM searches 
with 3D templatebased and surfacecleft analysis. 
ProKnow extends this approach by providing a prob
ability model for GO annotations of the protein in 
question.

Conclusions and perspectives
There is considerable activity today in the field of com
putational proteinfunction prediction, and although 
‘inheritance through homology’ remains the most com
mon and easily accessible approach, de novo sequence 
methods have been developed recently that do not rely 
on the inheritance of annotation through homology. 
The body of proteinfunction annotations that most 
prediction methods depend upon is becoming increas
ingly computerreadable and is being organized in ways 
that enhance the scope of predictions.

The scarcity of experimentally solved protein struc
tures means that most function prediction is carried 
out by comparing protein sequences, and the recent 
substantial growth in complete genome sequences is 
making these methods more powerful. Familybased 
resources that exploit profiles and sequence cluster
ing — and in many cases involve significant manual 
curation — can be extremely valuable in providing 
information on the variation in functional properties 
across a family. This makes it far easier to assess the 
accuracy of transferring functions between particular 
relatives. Many methods are also available to identify 
the functiondiscriminating residues in proteins and 
these are being used to divide families into more  
specific subfamilies.

with the advent of the structural genomics ini
tiatives, an increasing number of protein structures are 
being experimentally determined while their function 
is still unknown. In these cases, function can some
times be predicted by using the structure rather than 
the sequence of the protein. by analogy with sequence 
comparison, global comparisons can be made using 
foldcomparison methods, usually by identifying the 
individual structural domains in a protein, and local 
comparisons can be made using structural templates 
from the active site of enzymes. Other features that 
can be used for function prediction when a structure is 
available include conserved surface patches, clefts and 
electrostatic potential.

where is the field of computational proteinfunction 
prediction heading and what are the important mat
ters that need to be addressed? Initiatives to integrate 
more experimental data and to validate the perform
ance of prediction methods will increase their value 
to biologists. In general, it is currently best to seek and 
compare the results of several prediction methods,  
and meta-servers simplify this by providing easy access to 
a range of the bestperforming methods. Metaservers 
could be improved by developing better and more stable 

Figure 5 | using surface features and physico-chemical properties to recognize 
similarities between binding sites. Analysis of the protein surface as well as pockets 
such as the active-site cleft can often yield information about binding sites. Using 
SiteEngine, binding sites can be compared between proteins of unknown function and a 
library of binding sites from proteins of known function. a | The proteins of a cAMP-
dependent protein kinase (blue) (Protein Data Bank (PDB) entry 1ATP) and a structure of 
unknown function MJ0577 (pink) (PDB entry 1MJH) are superimposed based on the 
similarity of their binding sites. The ATP molecules from 1ATP are coloured blue and those 
from 1MJH are coloured red. b | A closer view of the active sites of cAMP-dependent 
protein kinase and protein MJ0577 and the surface properties used to detect the  
ATP-binding site. The surfaces of the active sites are represented as small dots and are 
coloured red for 1MJH and blue for 1ATP. SiteEngine detects that the known ATP-binding 
site of cAMP-dependent protein kinase has similar physico-chemical properties to that 
of MJ0577 and, hence, ATP-binding properties can be predicted for this structure of 
unknown function. Figure reproduced with permission from REF. 115  (2004) Elsevier.
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software environments to provide easier and more pow
erful interfaces and to support workflows. Confidence in 
the results returned by these servers could be improved 
by integrating thirdparty validation processes in addi
tion to those provided by the developers of the server. 
In some cases, more balance between the sequence
based and structurebased methods would be desirable 
because the sequencebased methods are still among the 
most mature and reliable methods for inferring protein 
function.

Structural genomics projects are enriching the data 
that computational methods rely on by increasing the 
diversity of protein sequences for which the structure 
has been determined. Structural genomics groups are 
also planning to select targets to maximize the number of 
protein functional families for which at least one structure 
has been determined. Greater collaboration between dif
ferent fields within the biological sciences will enhance 
this selection process and, hopefully, will ultimately lead 
to better tools for function prediction.
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