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Repeats

Evolution reuses developed material developed
Multiple stoichiometric and spatially close
combined structure-function relationships

In proteins, repeats vary from a single amino acid
(e.g. poly-GIn) to complete domain sequences o
combinations thereof.

Many types of (near)identical repeats exist in

genomes (Human genome > 50%) (next slide): 7$ 3
— Micro- and mini-satellites \;
- VNTRs N

— Interspersed repeats

Ribbon diagram of the C-

(hnp:l/globin.cse.psu.edu/courses/springZOOOlrepeats.html) terminal WD40 domain of
+ LINE and SINE repeats Teprescor i yoady which

« LTR retroposons, also called retrovirus-like elements ~ 2dopts a7-bladed beta-
propeller fold. Ribbon is

« DNA transposons coloured from blue (N-
terminus) to red (C-
terminus).

Protein repeats and disease

A number of neurodegenerative diseases have been found to be strongly
associated with proteins containing a poly-glutamine stretch. A
conformational change in the expanded polyglutamine stretch is believed
to form the molecular basis for disease onset.

Five neurodegenerative diseases (Huntington disease (HD),
spinocerebellar ataxia type 1 (SCA1), dentatorubral-pallidoluysian
atrophy (DRPLA), Macado-Joseph disease (MJD), and spinobulbar
muscular atrophy (SBMA)) have been found to be strongly associated
with a protein containing a polyglutamine stretch which is greatly
expanded in affected individuals (for a review, see D.E.Housman, Nature
Genet. 8, 10 -11, 1995). For the five diseases, the mean length of the
glutamine repeat in unaffected individuals is approximately twenty, and
the cutoff for pathology is about forty (the cutoff may be higher for MJID
(Housman, 1995). Furthermore, long polyglutamine stretches have been
found in many transcription factors.

Fibronectin repeat example
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Genome Repeats

Types of genome repeats:

« Microsatellites , 2-3bp (e.g. (CA),)

« Minisatellites , 10-100bp, occurring at more than 1000 locations in the human
genome)

* Variable number tandemrepeats (VNTR) range from 14 to 100 nucleotides
long that is organized into clusters of tandem repeats, usually repeated in the
range of between 4 and 40 times per occurrence. Clusters of such repeats are
scattered on many chromosomes.

VNTRs have been very effective in forensic crime investigations. When VNTRs are cut out, on either
side of the sequence, by restriction enzymes and the results are visualized with a gel electmphoresls a
pattern of bands unique to each individual is produced. The number of times that a seque!
repeated varies between different individuals and between maternal and paternal loci of an |nd|v|dua|
The likelihood of two individuals having the same band pattern is extremely improbable.
* Interspersed repeats
— SINE (short interspersed nuclear element), LINE (long interspersed nuclear element)
(next slide). These are also called non-LTR or poly-A retro(trans)posons
— LTRretroposons Elements of several hundred bp in length, called the long terminal
repeat, that appears at each end. Some autonomous elements are cousins of
retroviruses (e.g., HIV) but are unable to survive outside of the cell, and are called
endogenous retroviruses. None are known to be currently active in humans, though
some are still mobile in mice. The so-called MaLR (mammalian LTR) elements, which
arose before the mammalian radiation, seem to be non-autonomous repeats that
move via proteins from endogenous retroviruses.
— DNA transposons. Full-length autonomous elements encode a protein, called
transposase, by which an element can be removed from one position and inserted at
another. Transposons typically have short inverted repeats at each end.




LINE and SINE repeats
(elaboration of preceding slide)

A LINE (long interspersed nuclear element) encodes a reverse

transcriptase (RT) and perhaps other proteins.

*« Mammalian genomes contain an old LINE family, called LINE2,
which apparently stopped transposing before the mammalian
radiation, and a younger family, called L1 or LINE1, many of which
were inserted after the mammalian radiation (and are still being
inserted).

A SINE (short interspersed nuclear element) generally moves using

RT from a LINE.

« Examples include the MIR elements, which co-evolved with the
LINE2 elements. Since the mammalian radiation, each lineage
has evolved its own SINE family. Primates have Alu elements and
mice have B1, B2, etc.

The process of insertion of a LINE or SINE into the genome causes a

short sequence (7-21 bp for Alus) to be repeated, with one copy (in

the same orientation) at each end of the inserted sequence. Alus have
accumulated preferentially in GC-rich regions, L1s in GC-poor regions.

How to delineate repeats

1. Supervised: if you have a repeat motif, use profile-
based methods or the like
2. Nonsupervised
* You want to find a single repeat type
¢ You want to find tandem repeats
* You want to find interspersed repeats (intervening
sequence stretches
¢ You want to find multiple repeat types

Fast Fourier Transformation

A fast Fourier transform  (FFT) is an efficient algorithm
to compute the discrete Fourier transform (DFT) and its
inverse. FFTs are of great importance to a wide variety
of applications, from digital signal processing to solving
partial differential equations to algorithms for quickly
multiplying large integers.

FFT is an intuitive algorithm for detecting repeats
because it analysis periodicity in data

FFT

Often, you will sample a signal that is not a simple sine or cosine wave, it
looks more like the "sum" wave in Figure below. However, Fourier's
theorem states that any waveform in the time domain (that is, one that you
can see on an oscilloscope) can be represented by the weighted sum of
sines and cosines. The "sum" waveform below is actually composed of
individual sine and cosine waves of varying frequency. The same "sum"
waveform appears in the frequency domain as amplitude and phase
values at each component frequency (that is, fO, 2f0, 3f0).

Taken from
httpdlzone. nicom/devzonelcda/tut/plid/3342

FFT

The Fourier transform converts a time domain representation of a signal into a
frequency domain representation. The Fast Fourier Transform (FFT) is an
optimized implementation of a DFT that takes less computation to perform. The
Fourier Transform is defined by the following equation:

X(f) = Fix(t)} = | x(r) ed2nft gp |

(1)

However, a digitizer samples a waveform and transforms it into discrete values.
Because of this transformation, the Fourier transform will not work on this data.
Instead, the Discrete Fourier Transform (DFT) is used, which produces as its
result, the frequency domain components in discrete values, or “bins.” So, the
Discrete Fourier Transform (DFT) maps discrete-time sequences into discrete-
frequency representations. DFT is given by the following equation:

n-1

Xi = le ed2mikin

=0
(2)
Adapted from
http://zone.ni

for k=0,1,2, _..,n-1,
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Fast Fourier Transformation
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Fast Fourier Transformation
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Fast Fourier Transformation

Limitations of FFT-based approaches with respect to repeats
finding:

1. Repeats can be interspersed
2. Multiple repeat types

3. Incomplete repeats

Optimised tandem repeats
finding: TRUST

(Tracking repeats using significance and transitivity)

1. TRUST exploits transitivity
2. It has an dynamic profile building procedure

3. lttests for significance (using the EVD)

Seklarczyk, R. and Heringa, J. (2004) Tracking repeats using significance andsiaty. Bioinformatics 20 Suppl. 1, i311-i317.

Transitivity — T-COFFEE

‘aRegular Progressive Alignment Stcategy

Another method
(see course
Sequence
Analysis) that
uses transitivity

Notredame C., Higgins D.G. and Heringa J. (2000) T-Coffee: a novel method for fast and acuraultiple sequence alignment,
J. Mol. Biol. 302, 205-217




Transitivity — AuberGene
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seklarayk, R, and Heringa, J. (2006). AuberGene - a senstive genome alignment Biahformatics, Vol. 22 (12), 1431-1436

Remember the Waterman - Eggert
method (local alignment)

~

M[i- 1, j-1] + score(X[i],X[j])

M[i, j-1] -1

M[i-1, ] -1
\ Waterman-Eggert:
X X

MIi, ] = maxq

TRUST

What isa trace
aka alignment

e Atrace AN

Transitivity, intro

123456. .. 789  123456.

123456. .. 789

. Formally

1~4 and4~7 implies1~7

Transitivity

—_

PVALVALPVAL

Transitivity, score

123456...789  123456...789 123456. . . 789
\\\,///

. Score for the new trace

score(T,,,9=min(score(T), score(T))




Transitive matrix

Zoom-in

original traces:

Oy

transitivity:
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Transitivity:

divergent regions

Spurious repeats

sum of
values

distance to
the diagonal

Estimating tandem repeat size L

sum of
values

distance to
the diagonal

dlSt[k] = Sunjli:k( Mtrans[ii ]] )

Profile creation

. Choose subsequence of length L
. Define the profile based on it




Transitivity — TRUST method
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Transitivity — TRUST method

Method Sensitivity | Accuracy False
positives
TRUST 43% 82% 24
TRUST -force 5% 85% 34
RADAR 63% 64% 86

Graph-based clustering: REPRO

= Non-supervised algorithm for finding repeats
in protein sequences, where

= Repeats can be evolutionary distant (low
sequence similarity)

= Multiple sets of repeats can be recognised

Heringa, J., and ArgosP. (1993). A method to recognize distant repeatsin protein sequences.
Proteins Struct. Func. Genet. 17, 391-411.

Graph-based clustering: Repro

1. Calculate top-scoring non-overlapping local
alignments

2. Stacking of local alignments

3. Make graph with N-termini of top-alignments as
nodes

4. Perform graph-based clustering

Heringa, J., and ArgosP. (1993). A method to recognize distant repeatsin protein sequences.
Proteins Struct. Func. Genet. 17, 391-411.

TFIIIA: seven top-scoring non-overlapping

local alignments

(A) Top-alignment 1 Length = 149 Total score = 199.00 Score per position = 1.34

13 YICSFADCGA AYNKHRRLON HLCKHTGEK? FECKR--~- EGEEKGFTSL HFITRISLT TGEKN-FTCD SDGCOIRFTT KAWKKHFNR FENTKICVYY
162 Lebxxobscs Fvokmibmie- vi-bhvab—r —Sioorave vl risohoct exdrrvisde RbboRsYIHE ArtusiTos Hiesar-vev
107 CHFENCGRAE KKHIQLKVHQ FSii—~-TQQL PYECBAEGD KRFSLPSKL 152
250 deinobblc} nastents wivesr, kextie—- KA-SLASKL 208

Top-alignment 2 length = 127 Total score = 193.00 Score per position = 1.52

43 FPC-KEEGCE KGFTS————- ~LHHLT--RH SLTHTGEKNF TCDSDGCDLR FTTKANWKKH FNRFHNIKIC VYVCHFENCG KAFKKHNQLK VH-QFSHTOQ ]

(e I I8 I e s e g 1Y i
162 YBOKKDDSG- ~SPVGKTWTL YLKHVAECHQ DLA------- VC--DVCNRK FRUKDYLRDH -QKTHEKERT VYLCPRDGCD RSYTTAFNLR SHIQSFHEEQ

133 TPYECRHEGE DKRESIRSRY KRNEKVE 155
250 mbrvinindt chotnasl, ehlisvi 276

Top-aligment 3 length = 95 Total score = 182.00  Score per pesition - 1.52

13 YICSEADCGN AYNKHWKIGA HLCKHTGEKP FPCREEGCEK GFTSIARLTR HSITHTGEKN FTC-DSDGCD IRFTTIA--~ WWKKHFNRFH NIKIC 103
105 Iubntanbbx Arekamolry horsktooub vabontbiok mbstesii dexviad--- vetteobst- —stvokaums viAmvARcH DAY 194
Top-alignment § length = 60 Total score - 142.00  Score per position = 2.37

13 YICSFADCGA AYNKIWKLA HI-CHTGEK PECKESGCE KGFISLARLT RiSLTHTGEK 71

221 buberoaon strmamins hroseheson Hviemids kchwxsi Ribwivebt 200

Top-aligment 5 length = 61 Total score - 136.00  Score per pesition = 2.23

43 FECKERGOEK GETSIHLTR HSLTHIGEKN FICOSDGCDL RFTTRAMK HENRFINIKI ¢ 103

105 yvlurbnbok abxmolxv orsttoore velenzbtok siesrudn hervincre & 164

Top-alignment § length - 82 Total score - 134.00  Score per position = 1.63

14 TCSPADCGAA YNKIWKLQN! TCRITOEKP- FECREEGCEK. GFTSLARLTR HSUT-HIGEK NETCDSDGCD IRETTRANN K 93

155 vhov-—tum srioriRoh geobeebany viderobion srbmarvins Aroseizzor pvisabbo rehwakksis sk 272

Top-alignnsat 7 length = 83 Total score - 122.00  Score per position = 1.47

57 FENIKIC- VIVCHFENCS KAFKKINGLE VHQESH-T0Q LPYECPHEGE DKR————FS1, PSRIKRAEKY HAGYRCKIDD 5C5 171

(s TR ) | |
161 LKAVAECHQD LAVC--DVCN RKFRHKDYLR DHQKTHEKER TVILCPRDGC DRSYTTAFNL RSHIQSFHEE ORPFVC-EHA GCG 260
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TFIIA: Stacking of local alignments
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TFIIIA: Graph-based clustering
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Repro: adding nodes (repeats) to
graph

73
ITER 1: add 252 73 ITER 2:add 73,135

REPRO graph-cluster
requirements:

1. 23 edges per node 105
into graph

2. At least one edge in 43 / )
‘clan’ (used top- ITER 3: add 192
alignments in graph) 73

A genetic algorithm is an optimisation algorithm.
It is analogous to the evolutionary optimisation procedure.

* The central component is a genome, defined as an array of genes, the status
of which is represented by a number. For example [4 7 3 8] would be a genome
composed of four genes with values (states) 4, 7, 3 and 8.

A genome can also be considered as an 'individual'. In a genetic algorithm, a
large number of individuals is created that form a 'population’.

Each individual is subdued to a test, often the performance of an application
(e.g. alignment), where the genes are used to specify program parameters

»

*

(e.g. gap penalties). The test yields a score or fitness value.

A1l individuals are ranked (sorted) according to performance.

only the top performing individuals pass their genes to the next generation,
the rest is discarded.

* The new generation is generated using the genomes of the top performing individual
This can be done through several 'operators': mutation, crossover, transpositior
inversion.

The algorithm is performed until it converges to a stable solution.

»

*

*

Genetic Algorithm A genetic algorithmis an optimisation aigorithm. It s analogous tothe evolutionary optimisation procedure. * The central component is a
genome, defined as an array of genes, the status of which is represented by a number. For example [4 7 3 8] would be a genome composed of four genes
with values (states) 4, 7, 3 and 8 * A genome can also be considered as an ‘individual’. In a genetic algorithm, a large number of individuals is created that
form a ‘population’. * Each individual s subdued to atest, often the performance of an application (e.g. alignment), where the genes are used to specify
program parameters (e.g. gap penalties). The test yields a score or fitness value. * Allindividuals are ranked (sorted) according to performance. * Only the top
performing individuals pass their genes to the next generation, the restis discarded. * The new generation is generated using the genomes of the top
performing individuals. This can be done through several ‘operators": mutation, crossover, transposition, inversion. * The algorithm is performed unti it
converges to a stable solution

Near-optimal parametrisation by Genetic Algorithm

Genes [0-4] adopt random values, for example from0t0 9.
They are transformed to yield the parameter space.

Genes Parameters

weight = 0.05 * parameter[0];
gap-open = (0.5 * parameter([1l]) + 10;
gap-extend = 0.5 * parameter[2];
add-constant = 0.4 * parameter[3];
Nr genome score (= fitness)

0 [e: 5 8 51 153.6867

aky [3 8 6 4] 153. 6446

2. [4 6 6 3] 153.3365

3 [7 2 8 0] 153.2564

4: [4 6 7 4] 153.0322




Example Setup
Near-optimal parametrisation by Genetic Algorithm

Genes [0-4] adopt random values, for example from 0 to 9.
They are transformed to yield the parameter space.

Genes Parameters

weight = 0.05 * parameter([0];
gap-open = (0.5 * parameter([1]) + 10;
gap-extend = 0.5 * parameter(2];
add-constant = 0.4 * parameter([3];

Nr genome score (= fitness)
0: [5585] 153.6867
1: [3864] 153.6446
2: [4663] 153.3365
3: [7280] 153.2564
4: [4674] 153.0322

Iteration scheme of Genetic Algorithm

1. generate 200 random genomes

-=> 2. run alignments with paramaters of each gene
3. score result (fitness)

4. sort (according to fitness)

<- 5. select top genomes and create new generation
[558 5] [386 4]

Typical Genetic Algorithm Scheme Iteration scheme of Genetic
Algorithm
generate 200 random genomes ->
run alignments with paramaters of each gene | |
score result (fitness) | |
sort (according to fitness) | <-
select top genomes and create new generation
[5585][3864]
X

aprwON =

[3885]

X
[3 8 8 5]
Iteration results
Iteration 1 Iteration 5§ Iteration 8

0: [5585 1] 153.68 0: [5§58 3 1] 154.90 0: [5§58 3 1] 154.90
1: [3 8 6 4 0] 153.64 1: [5 4 8 2 2] 154.68 1: [5 4 8 3 2] 154.90
2: [46 63 0] 153.33 2: [548 2 2] 154.68 2: [54 83 2] 154.90
3: [7280 2] 153.25 3: [5 48 20] 154.64 3: [5 48 2 2] 154.90
4: [4 6 7 4 2] 153.03 4: [5 4 8 3 0] 154.64 4: [5 4 8 3 2] 154.90
5: [387 18] 152.48 5: [4 58 3 3] 154.44 5: [5 4 8 3 2] 154.90
6: [6 3 8 2 5] 152.37 6: [458 3 0] 154.39 6: [5 48 3 2] 154.90
7: [6 53 3 0] 152.37 7: [4 58 3 0] 154.39 7: [5 4 8 3 2] 154.90
8: [6 4 53 3] 152.30 8: [4 58 3 0] 154.39 8: [5 4 82 2] 154.90
9: [77 80 1] 152.01 9: [4 4 83 2] 154.35 9: [5 4 8 3 2] 154.90
10: [5 5 4 5 2] 151.91 10: [5 5 8 3 0] 154.32 10: [5 4 8 3 2] 154.90

Multivariate statistics — Principal
Component Analysis (PCA)

Principal component analysis (PCA) involves a mathematical procedure that
transforms a number of (possibly) correlated variables into a (smaller)
number of uncorrelated variables called principal components. The first
principal component accounts for as much of the variability in the data as
possible, and each succeeding component accounts for as much of the
remaining variability as possible.

Traditionally, principal component analysis is performed on a square
symmetric matrix of type SSCP (pure sums of squares and cross products),
Covariance (scaled sums of squares and cross products), or Correlation
(sums of squares and cross products from standardized data).

The analysis results for objects of type SSCP and Covariance do not differ,
since these objects only differ in a global scaling factor. A Correlation object
has to be used if the variances of individual variates differ much, or if the
units of measurement of the individual variates differ.

The result of a principal component analysis on such objects will be a new
object of type PCA

Multivariate statistics — Principal
Component Analysis (PCA)

Objectives of principal component analysis

To discover or to reduce the dimensionality of
the data set.

To identify new meaningful underlying
variables




Multivariate statistics — Principal
Component Analysis (PCA)
How to start

We assume that the multi-dimensional data have been collected in a
table. If the variances of the individual columns differ much or the
measurement units of the columns differ then you should first
standardize the data.

Performing a principal component analysis on a standardized data
matrix has the same effect as performing the analysis on the
correlation matrix (the covariance matrix from standardized data is
equal to the correlation matrix of these data).

Calculate Eigenvectors and Eigenvalues

We can now make a plot of the eigenvalues to get an indication of the
importance of each eigenvalue. The exact contribution of each
eigenvalue (or a range of eigenvalues) to the "explained variance"
can also be queried: You might also check for the equality of a
number of eigenvalues.

Multivariate statistics — Principal
Component Analysis (PCA)
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Eigenvectors ordered according to eigenvalues...

Multivariate statistics — Principal
Component Analysis (PCA)

Determining the number of components

There are two methods to help you to choose the number
of components. Both methods are based on relations
between the eigenvalues.

Plot the eigenvalues: If the points on the graph tend to
level out (show an "elbow"), these eigenvalues are
usually close enough to zero that they can be ignored.

Limit variance accounted for and get associated number
of components

Multivariate statistics — Principal
Component Analysis (PCA)

Getting the principal components

Principal components are obtained by projecting the
multivariate datavectors on the space spanned by the
eigenvectors. This can be done in two ways:

1. Directly from the table without first forming a PCA
object: You can then draw the Configuration or
display its numbers (Gower, 1966).

2. Standard way: project the data table onto the PCA's
eigenspace.

Multivariate statistics — Principal
Component Analysis (PCA)
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Multivariate statistics — Principal
Component Analysis (PCA)

Mathematical background on principal component
analysis

The mathematical technique used in PCA is called eigen
analysis: we solve for the eigenvalues and
eigenvectors of a square symmetric matrix with sums
of squares and cross products. The eigenvector
associated with the largest eigenvalue has the same
direction as the first principal component. The
eigenvector associated with the second largest
eigenvalue determines the direction of the second
principal component. The sum of the eigenvalues
equals the trace of the square matrix and the maximum
number of eigenvectors equals the number of rows (or
columns) of this matrix.




Multivariate statistics — Principal
Component Analysis (PCA)

Similarity
Criterion:
Correlations Correlations

—> 6x%6
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Calculate eigenvectq
with greatest
eigenvalues:

Project data
points onto | <=
new axes

(eigenvectors sLinear combinations

«Orthogonal

Multivariate statistics — Principal Component Anagy@CA)
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A recap on Benchmarking

How accurate?

Sequence searching:
Specificity
Selectivity

[Sequence alignment:
Column score or pairscore (correctness)
Alignment score (significance)

General:
Z-score

How fast?
Time complexity
CPU time

Random variables described by probability density of normal distribution

(@) 1 —(e=p)?

z) = e 2%

& V2ro

[The distribution belongs to the class of Gaussian distributions

p(z) = e~ (@=0)/c)

In benchmarking we have two random distributions:
[The background distribution of all true negative scores and the target
distribution of all true positive scores.

sigma = 1->68% of area
sigma = 2 ->95% of area
sigma = 3 ->99.7% of area

[e—68% of data —|

95% of data

99.7% of data

T
=9 =2 = o 1 2 3
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What is a benchmark curve?

Every program that computes something can give true and false answers.
In a benchmark curve one plots, for example, the sum of true answers

in y-direction and the sum of false answers in the x-direction.

IThe terms 'true’ and 'false’ might be replaced by 'sensitivity’ and
'specificity’, or 'coverage’ and 'error per query'; however, the

basic idea is always the same.
An easy way to visualise a benchmark curve is a walk based on answers

to a quiz: if the answer is correct go straight, if it is incorrect go right.

[The curve you walk is a benchmark curve: if you go mostly straight then you

know a lot, if you go mostly right you know a little.

04
/‘\\ (exp(-1"(x"2/2))/sq(6.28)) ——
% (exp(-1*((x-8)""2/4))/sqrt{10))
el /N |
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03 - / \ =
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Y
] \
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\
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// \
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/ %
# X
~ e
0 . . —
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Plot p(TP) [= sensitivity] over p(FP) [= 1 - specificity]

ROC curves are used to evaluate the results of a prediction and was first
lemployed in the study of discriminator systems for the detection of radio
signals in the presence of noise in the 1940s. In the 1960s they began to be

used in psychophysics, to assess human (and occasionally animal) detection

of weak signals. They also proved to be useful for the evaluation of
machine learning results, such as the evaluation of Internet search engines.

[They are also used extensively in epidemiology and medical research.

[Sometimes, the ROC is used to generate a summary statistic. Two common

versions are:
the intercept of the ROC curve with the line at 90 degrees to the

100%

P(TP)

100%

P(FP)

-Operator%20Cl

no-discrimination line
the area between the ROC curve and the no-discrimination line

information about the pattern of tradeoffs of the particular discriminator

algorithm.

However, any attempt to summarize the ROC curve into a single number loses

11



Specificity

TN
(TN + FP)
in benchmarks sometimes expressed as 'error per query’

Speci ficity =

Sensitivity
TP
(TP + FN)
in benchmarks sometimes expressed to as 'percent coverage'

Sensitivity =

© 01 02 03 04 05 06 07 08 09 1
Fraction o FP. Log (Fraction o FP)

° . 3
o 2 4 6 8 0oz wE 2 4 6 8 f0 iz W 10w

TP Average 545 FPs Average SAS

ROC curves are not always the best presentation, because the true/false
classification might be too coarse.

Comparison of alignment quality

Modeler Developer

A c
family family
a o8

o3 K
Sequence identity

In these plots both axes deviate from the standard true/false definition.

What is the 'standard of truth'?

Is the standard of truth independent of your own application?

For example, you can use a sequence alignment database derived from structural
alignment as standard of truth for benchmarking a sequence alignment program,
but you need to be careful when using a detabase derived from sequence alignme
as standard of truth.

Is the training set random and independent of the test set?
When developing an application, you need to parametrise and test it on a standar
of truth. The data set used for parametrisation is called 'training set' and the
data set used for testing is called 'test set'.
1. It is absolutely mandatory that training and test data sets are independent
(no overlap).
2. The data for the training set have to be drawn randomly from the standard of
truth. If you pre-select specific data, the application will be biased
towards these data and the benchmark as well.

Evaluating multiple alignmentdMSA9

¢ Conflicting standards of truth
— evolution
— structure
— function

« With orphan sequences no additional information
« Benchmarks depending on reference alignments
Quality issue of available reference alignmenabases

Different ways to quantify agreement with referenc
alignment (sum-of-pairs, column score)

“Charlie Chaplin” problem

Charlie Chaplin once joined a Charlie-Chaplin cotitipe in disguise and
became third. What does this tell you about thgettive function’ with the
jury?

What fraction of the matched amin
acid pairs (or alignment columns) in

Evaluation measures; i ===

Query Reference
— —

—

~ Column score

‘strict’ measure
— —
—
ﬁ
—
—

Sum-of-Pairs score

more lenient measure

12



Evaluating multiple alignments
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BAIIBASE alignment lsngthnseq

150000

20000.0

You can score a
single MSA using
the sum of all
matched amino
acid pairs score.
This is also
referred to as the
Sum-of-Pairs (SP;
score.. (a bit
confusing with the|
use on the
preceding slide..)

Evaluating multiple alignments

800000 T T T

Many test
alignments have a
600000 higher SP score
than the reference
alignment

(“Charlie Chaplin
problem’)

400000

ASP o

200000

00

200000

00 £000.0 10000.0 15000.0 20000.0

BAIIBASE alignment nseq * len

Evaluating multiple alignments

300

Alignment % with Praline SP > BAIBASE SP
»

/

200

00 1000.0 2001
BaliBASE alignment

30000 40000
nseq* len > x

50000

Many test
alignments have
higher SP score
than the reference
alignment
(“Charlie Chaplin
problem’)

BAIIBASEbenchmark alignments

Thompson et al. (1999) NAR 27, 2682.

5 categories:

e cat. 1- equidistant

e cat. 2- orphan sequence

* cat. 3- 2 distant groups

* cat. 4—long overhangs

« cat. 5- long insertions/deletions

141 Alignments in total

ComparingT-coffeewith other methods

Table 2
of four with
Method | ‘BaliBase Reference {Number of famiHes) o T:?Hﬁ!‘:d
Name Cat1 cat2 | cat3 | Cata | Cats | Totar1 | Totar2 | by methos
82y 23y 12y 13y 11y 141y | 14 R
Dialign2 710 252 351 4T 04 6l.3 373 11.3%%
Clustatw 725 322 125 &5.7 743 6.4 526 e
Prrp 786 3.5 502 511 2.7 264 59.0 369
T—Coffee (CLE) B80.7 373 529 B3.2 BE.7 72.1 68.7

Column scores are used here

BAIIBASE benchmark alignments

Comparison of T—Coffee and Prrp

If you are a better|
program on
average, this doe:
not mean you win|
inall cases...

T—Coffee Accuracy
Prrp Accuracy

53% 50% 47%
- How do you know|
- what is the
situation in your
case? Even with
better program
you can be
unlucky..

et o Balibase
Aljgnment.

| % Identity within
the core region

13



