Human Genome Analysis

The amount of genetic information in organisms

<table>
<thead>
<tr>
<th>Name</th>
<th>Genome size (Mb)</th>
<th># genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma genitalium</td>
<td>0.5</td>
<td>470</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>4.5</td>
<td>4400</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>12</td>
<td>5500</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>120</td>
<td>18000</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>97</td>
<td>22000</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>3500</td>
<td>23457</td>
</tr>
<tr>
<td>Zea mays</td>
<td>2500</td>
<td>50000</td>
</tr>
</tbody>
</table>

SNPs and haplotypes

Passengers and their evolutionary vehicles

SNP - Single Nucleotide Polymorphism

- Definition
 - SNP and phenotype
- Occurrence in genome
 - Rarity of most SNPs (agrees with neutral molecular evolutionary theory)
 - SNPs in human population:
 - Inter-genic
 - Coding regions
 - Every 1400bp
 - Every 1430bp
 - High variance in genome!
- Detection of SNPs:
 - Hybridization
SNP - Phase inference

- In the data from sequencing the genome the origin of SNP is scrambled

 \[
 \ldots CT^G AC^G CT^A A GT\ldots
 \]

 Possibility 1 Possibility 2

 chromosome \(\ldots CTGACCGT\ldots \) \(\ldots CTGACAGT\ldots \)

 chromosome \(\ldots CTTACAGT\ldots \) \(\ldots CTTACCGT\ldots \)

 Which SNPs are on the same chromosome (are *in phase)*?

Linkage Disequilibrium, intro

How hard is it to break a chromosome

- An allele/trait/SNP \(A \) and \(a \) are on the same position in genome (locus), thus on a single chromosome an individual can have either of them – but not both

 \(f_A \cdot \text{frequency of occurrences of trait } A \text{ in population} \)

 \(f_a \cdot f_b = 1 - f_a \cdot f_b \) are frequency occurrences of \(B \) and \(b \)

- Probabilities of occurrences of both traits on the same chromosome:

 \[
 \begin{array}{ccc}
 f_{AB} & A & B \\
 \end{array}
 \]

 - LD and genomic recombination

SNP – phase inference

Determining the parent of origin for each SNP

\[
\ldots CT^G AC^G CT^A A GT\ldots
\]

\[
\ldots CT^G AC^G CT^A A GT\ldots
\]

In this case:

\[
\begin{array}{ccc}
GG & TA & \Phi \\
\end{array}
\]

Phase inference – the reason why many SNPs sequencing is done for child and two parents.

Linkage Disequilibrium, calculation

- When these alleles are not correlated we expect them to occur together by chance alone:

 \[
 \begin{align*}
 f_{AB} &= f_A f_B \\
 \end{align*}
 \]

 - But if \(A \) and \(B \) are occurring together more often (disequilibrium state), we can write

 \[
 \begin{align*}
 f_{AB} &= f_A f_B + D \\
 \end{align*}
 \]

 - where \(D \) is called the measure of disequilibrium

 Of course from definitions above we have \(D = f_{AB} f_A f_B \)

How can we use it?

- Phase inference tells us how SNPs are organized on chromosome
- Linkage disequilibrium measures the correlation between SNPs

Haplotypes - vehicles for SNPs

- discrete haplotype blocks
- The haplotype blocks:
 - Up to 100kb
 - 5 or more SNPs
 - For example, this block shows just two distinct haplotypes accounting for 95% of the observed chromosomes

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAGAACCC</td>
<td>283 (83.2%) haplotype A</td>
</tr>
<tr>
<td>AATCGGGG</td>
<td>40 (11.8%) haplotype B</td>
</tr>
<tr>
<td>GATTAGCC</td>
<td>2 (0.6%)</td>
</tr>
<tr>
<td>GTGAGGG</td>
<td>2 (0.6%)</td>
</tr>
</tbody>
</table>

*Another 13 chromosomes (3.8%) were observed that matched haplotype A or B at all alleles except one, and might represent gene conversion or an undetected genotyping error.

Back to SNPs

Daly et al (2001), Figure 1

Haplotypes of a genome fragment

- Observed haplotypes with dotted lines wherever probability of switching to another line is > 2%
- Percent of explanation by haplotypes
- Contribution of specific haplotypes
Literature

- Gibson, Muse „A Primer of Genome Science“

We start with...

Input: 4 *Saccharomyces*

- *S. cerevisiae*, *S. paradoxus*, *S. mikatae*, *S. bayanus*
- 5 to 20 mln years since the divergence of species
- **Divergent enough** to introduce noise where needed
- **Related enough** for orthologues to be easily detectable

Yeast Genome Analysis

- Anchoring with ORFs
- Aligning region in between

Genome alignment

...CGATGACTATTA...
...CGATGACTA- TA...
...C---GAGTATA...
...CGATGACTATTA...

50kb segment; arrow – direction of ORF, red – 1-1 match; blue – multiple match
Genome evolution - nucleotides

Nucleotide identity:

<table>
<thead>
<tr>
<th></th>
<th>S. paradoxus</th>
<th>S. mikatae</th>
<th>S. bayanus</th>
</tr>
</thead>
<tbody>
<tr>
<td>coding</td>
<td>90%</td>
<td>85%</td>
<td>80%</td>
</tr>
<tr>
<td>intergenic</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
</tr>
</tbody>
</table>

2x faster!

Genome evolution - nucleotides

Measures of variation for all species (multiple alignment)

<table>
<thead>
<tr>
<th></th>
<th>identity</th>
<th>gap</th>
<th>frame shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>coding</td>
<td>60%</td>
<td>1.3%</td>
<td>0.14%</td>
</tr>
<tr>
<td>intergenic</td>
<td>30%</td>
<td>14%</td>
<td>10.2%</td>
</tr>
<tr>
<td>difference</td>
<td>2x</td>
<td>10x</td>
<td>75x</td>
</tr>
</tbody>
</table>

Genome evolution at large scale

Telomeres - evolution's workshop
- Clusters of ambiguity
- 7-52kb from each end
- Translocations between telomeres
- Rapid evolution
- Observed in Plasmodium falciparum (antigenic variation)
Whole-genome duplication (WGD)

- Poorly understood
- “Cataclysmic” genomic event
- Return to normal state
 - Mutations
 - Rearrangements
 - Gene loss

K. waltii as a proof of genome duplication

S. cerevisiae
- 5714 genes
- 16 chromosomes
- 7% Kw genes: no similarity to Sc

K. waltii
- 5230 genes
- 8 chromosomes

Yeast-genome duplication

- 8 -> 16 chromosomes
- Loss of 90% of duplicated genes
- Paired regions 90% of genome
- ~500 duplicated gene pairs

Evidence of whole genome duplication
Gene correspondence

Doubly Conserved Synteny blocks:
- conserved gene order
- genes less than 20kb apart
- double hits Kw – Sc
- (often) no duplicated genes

DCS in numbers

- 253 DCS blocks
- ~80% coverage of K. waltii genome
- Typical block
 - approx. 27 genes (max 81)
 - separated by ~3 genes
 - 1% of Kw matches >2 blocks in Sc

DCS – overview of genomes

Centromere proof of genome duplication

Note! No duplicated genes
Evolutionary analysis: gene loss

- **Genome sizes:**
 - Sc 13% larger than Kw
 - 12% paralogous genes

- **Pattern of loss:**
 - Many small deletions (~2 genes)
 - Balanced between regions
 - No chromosome loss
 - No large segmental deletions

Evolutionary analysis: accelerated divergence

- 500 paralogous pairs
- 80 pairs (17%): accelerated evolution
 - Sc genes which evolve 50% faster than Kw
Old and new functions of duplicated genes

- Only 1 gene accelerates (95% of cases)
 - one copy preserves the function
 - the other copy is free to diverge
- Functions derived from ancestral ones
 - silencing of Sir3 comes from origin-of-replication Orc1
 - Spatio-temporal differentiation

Knocking-out duplicated genes

- KO of paralogue
 - ancestral: lethal in 20%
 - derived: not lethal
- Derived copy:
 - not essential in a rich medium
 - (sometimes) lose essential aspects of its original function

Summary

- Genome duplication is followed by:
 - massive gene loss: 90% of new genes
 - gene specialization: only one of paralogues accelerates
- Tiny footprints of duplication: genome grows by 10%