
Computers and Chemistry 26 (2002) 459–477

Local weighting schemes for protein multiple sequence
alignment

Jaap Heringa 1*
Di�ision of Mathematical Biology, MRC National Institute for Medical Research (NIMR), The Ridgeway, Mill Hill,

London NW7 1AA, UK

Received 29 May 2001; received in revised form 9 November 2001; accepted 20 November 2001

Abstract

This paper describes three weighting schemes for improving the accuracy of progressive multiple sequence
alignment methods: (1) global profile pre-processing, to capture for each sequence information about other sequences
in a profile before the actual multiple alignment takes place; (2) local pre-processing; which incorporates a new
protocol to only use non-overlapping local sequence regions to construct the pre-processed profiles; and (3)
local–global alignment, a weighting scheme based on the double dynamic programming (DDP) technique to softly
bias global alignment to local sequence motifs. The first two schemes allow the compilation of residue-specific
multiple alignment reliability indices, which can be used in an iterative fashion. The schemes have been implemented
with associated iterative modes in the PRALINE multiple sequence alignment method, and have been evaluated using
the BAliBASE benchmark alignment database. These tests indicate that PRALINE is a toolbox able to build
alignments with very high quality. We found that local profile pre-processing raises the alignment quality by 5.5%
compared to PRALINE alignments generated under default conditions. Iteration enhances the quality by a further
percentage point. The implications of multiple alignment scoring functions and iteration in relation to alignment
quality and benchmarking are discussed. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The simultaneous alignment of three or more nucle-
otide or amino acid sequences is one of the most
common tasks in bioinformatics. Multiple alignments
are an essential pre-requisite to many further modes of
analysis into protein families such as homology mod-
elling, secondary structure prediction, phylogenetic re-
construction, or the delineation of conserved and
variable sites within a family. Alignments may be fur-
ther used to derive profiles (Gribskov et al., 1987) or

hidden Markov models (Bucher et al., 1996; Eddy,
1998; Karplus et al., 1998) that can be used to scour
databases for distantly related members of the family.

With the recent completion of the first draft of the
human genome and genomes of many other species
becoming rapidly available, the accurate alignment of
biological sequences becomes more important than
ever. Although many initiatives are underway for large-
scale proteomics and structure elucidation of novel
genomic proteins, an important drive in genomic ap-
proaches is essentially aimed at gathering the function
of most if not all translated proteins from sequence
data alone. To accomplish this, accurate alignment of
the sequences is essential. Given the overwhelming
amounts of sequence data, the alignment engines have
to be extremely fast and fully automatic to be included
in genomic pipelines.

Abbre�iations: DP, dynamic programming; DDP, double
dynamic programming; SP, sum-of-pairs.
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The automatic generation of an accurate multiple
alignment is potentially a daunting task. Ideally, one
would make use of an in-depth knowledge of the
evolutionary and structural relationships within the
family but this information is often lacking or difficult
to use. General empirical models of protein evolution
(Benner et al., 1992; Dayhoff, 1978; Henikoff and
Henikoff, 1992) are widely used instead but these can
be difficult to apply when the sequences are less than
30% identical (Sander and Schneider, 1991). Further,
mathematically sound methods for carrying out align-
ments, using these models, can be extremely demanding
in computer resources for more than a handful of
sequences (Carillo and Lipman, 1988; Wang and Jiang,
1994). To be able to cope with practical dataset sizes,
heuristics have been developed that are used for all but
the smallest data sets.

The most commonly used heuristic methods are
based on the progressive alignment strategy (Hogeweg
and Hesper, 1984; Feng and Doolittle, 1987; Taylor,
1988) with ClustalW (Thompson et al., 1994) being the
most widely used implementation. The idea is to estab-
lish an initial order for joining the sequences, and to
follow this order in gradually building up the align-
ment. Many implementations use an aproximation of a
phylogenetic tree between the sequences as a guide tree
that dictates the alignment order. Although, appropri-
ate for many alignment problems, the progressive strat-
egy suffers from its greediness. Errors made in the first
alignments during the progressive protocol cannot be
corrected later as the remaining sequences are added in.

Attempts to minimize such alignment errors have
generally been targeted at global sequence weighting
(Altschul et al., 1989; Thompson et al., 1994), where the
contribution of individual sequences are weighted dur-
ing the alignment process. However, such global se-
quence weighting schemes carry the risk of propagating
rather than reducing error when used in progressive
multiple alignment strategies (Heringa, 1999), for rea-
sons given later in this paper.

The main alternative to progressive alignment is the
simultaneous alignment of all the sequences. Two such
implementations are available, MSA (Lipman et al.,
1989) and DCA (Stoye et al., 1997). Both methods are
based on the Carillo and Lipman algorithm (Carillo
and Lipman, 1988) to limit computations to a small
area in the multi-dimensional search matrix. They
nonetheless remain an extremely CPU- and memory-in-
tensive approach, applicable only to about nine se-
quences of average length for the fastest
implementation (DCA). Iterative strategies (Hogeweg
and Hesper, 1984; Gotoh, 1996; Notredame and Hig-
gins, 1996; Heringa, 1999) are an alternative to optimise
multiple alignments by reconsidering and correcting
those made during preceding iterations. Although such
iterative strategies do not provide any guarantees about

finding optimal solutions, they are reasonably robust
and much less sensitive to the number of sequences
than their simultaneous counterparts.

All of these techniques perform global alignment and
match sequences over their full lengths. Problems with
this approach can arise when highly dissimilar se-
quences are compared. In such cases global alignment
techniques might fail to recognise highly similar inter-
nal regions because these may be overshadowed by
dissimilar regions and high gap penalties normally re-
quired to achieve proper global matching. Moreover,
many biological sequences are modular and show
shuffled domains (Heringa and Taylor, 1997), which
can render a global alignment of two complete se-
quences meaningless. The occurrence of varying num-
bers of internal sequence repeats (Heringa, 1998) can
also severely limit the applicability of global methods.
In general, when there is a large difference in the
lengths of two sequences to be compared, global align-
ment routines become unwarranted. To address these
problems, Smith and Waterman (1981) early on devel-
oped a so-called local alignment technique in which the
most similar regions in two sequences are selected and
aligned. The algorithm has been extended in various
techniques to compute a list of top-scoring pair-wise
local alignments (Waterman and Eggert, 1987; Huang
et al., 1990; Huang and Miller, 1991). Alignments pro-
duced by the latter techniques are non-intersecting; i.e.,
they have no matched pair of amino acids in common.
For multiple sequences, the main automatic methods
include the Gibbs sampler (Lawrence et al., 1993),
MEME (Bailey and Elkan, 1994) and Dialign2 (Mor-
genstern, 1999). These programs often perform well
when there is a clear block of ungapped alignment
shared by all of the sequences. They perform poorly,
however, on general sets of test cases when compared
with global methods (Thompson et al., 1999a;
Notredame et al., 2000).

Here, three strategies aimed at combining the best
properties of global and local multiple alignment are
presented: global pre-processing (Heringa, 1999) and
two new strategies, local pre-processing and local–
global DDP. The latter is a technique to integrate local
alignment patterns into global alignment using the dou-
ble dynamic programming (DDP) protocol. The three
modes are incorporated in the multiple alignment pack-
age PRALINE (Heringa, 1999) and are used in progres-
sive multiple alignment. They each incorporate a
weighting scheme that is more flexible and appropriate
for alignment than the aforementioned global sequence
weighting schemes. The global and local pre-processing
strategies are aimed at minimising error at early stages
during progressive multiple alignment and do this by
using information from other reliable sequences for
each pair-wise comparison at every stage during pro-
gressive alignment. An important consequence of the



J. Heringa / Computers & Chemistry 26 (2002) 459–477 461

pre-processing scenarios is that they allow the calcula-
tion of a reliability index for each amino acid in the
alignment, because the consistency of each aligned
residue can be estimated based on the information from
other sequences. The schemes allow further optimisa-
tion in iterative steps, based on the residue-specific
reliability indices as an objective function. It will be
shown how these weighting schemes can be used to
refine multiple alignment, and how the iterative mode
can further enhance the alignment quality. Also a new
motif-based weighting scheme will be introduced here,
based on a double dynamic programming to reconcile
all best local alignments in a single global alignment.
Finally, an evaluation of the weighting schemes with
various parameter settings will be presented. Measuring
the alignment quality is performed using the BAliBASE
multiple alignment benchmark set (Thompson et al.,
1999b), a database comprising five distinct alignment
categories developed especially for testing the quality of
multiple alignment methods.

2. Overview of existing sequence weighting schemes

There are two basic modes of sequence weighting
that can be distinguished for multiple sequence align-
ment: global and local sequence weighting. The latter
can be subdivided into position specific sequence
weighting and motif weighting. This section will present
an overview of previously developed techniques falling
in the above three classes.

2.1. Global sequence weighting

Early on Altschul et al. (1989) and Vingron and
Argos (1989) proposed global sequence weighting as a
means to deal with the fact that sets of sequences
normally are unequally represented. To address this
problem, global sequence weighting involves the assign-
ment of a weight for each sequence that is used in
deriving any average value from the multiple alignment
of a set of sequences. The Altschul et al. weighting
scheme is integrated in the multiple sequence alignment
method MSA (Lipman et al., 1989), where the sequence
weights are derived from a rooted phylogenetic tree.
Sequences closer to the root in the tree are assigned a
larger weight than those at the periphery. In contrast,
Vingron and Argos (1989) do not use a tree but derive
the sequence weights by calculating for each sequence
the average distance from all others. More distant
sequences (outliers) according to this criterion receive a
larger weight than relatively similar sequences.

Thompson et al. (1994) derived the sequence weights
in a profile directly from the branch lengths of a
phylogenetic tree constructed with the Neighbour-Join-
ing technique (Saitou and Nei, 1987). They used these

weights during progressive alignment in the construc-
tion of profiles representing pre-aligned sequence
groups. Independently, Lüthy et al. (1994) modified the
profile search technique by employing the Voronoi-
based weighting (Sibbald and Argos, 1990), a technique
that exploits a notion of the neighbourhood around
each sequence in sequence space. Both techniques make
use of the BLOSUM62 matrix, constructed from un-
gapped alignment blocks (Henikoff and Henikoff,
1992). In line with this derivation of the BLOSUM62
matrix, Thompson et al. (1994) exclude from analysis
all alignment positions with a percentage of gaps higher
than a certain specified threshold. Such regions would
be expected to constitute loop regions in the associated
protein structures showing less consistent amino acid
conservation patterns.

Henikoff and Henikoff (1994) derived global se-
quence weights in a tree-less way by averaging the
weights derived for each alignment column by a simple
weighting scheme based on the principle of maximum
entropy. For each alignment column, the contribution
of each occurring amino acid is linearly down-weighted
to make the overall contribution of each amino acid
type equal. For example, if a column would have five
valines and only one leucine, the contribution for each
of the sequences having a valine at the considered
alignment position would be 1/5 of that of the sequence
comprising leucine.

In principle it is a good idea to perform global
weighting of multiple alignments aimed at increasing
the contribution of more distant sequences as they
carry more information at each alignment position.
However, when sequence weighting is used in progres-
sive multiple alignment, the increased chance of mis-
takes when aligning distant sequences can well lead to
error progression (Heringa, 1999). Vogt et al. (1995)
compared local and global alignments of pair-wise se-
quences with a data bank of structure-based alignments
(Pascarella and Argos, 1992) and included a set of over
30 substitution matrices with optimised gap-penalties.
The best global alignments were achieved with the
Gonnet residue exchange matrix (Gonnet et al., 1992),
resulting in 15% incorrect residue matching when se-
quences with 30% residue identity were aligned. The
error rate quickly increased to 45% incorrect matches at
20% residue identity of the aligned sequences, and to
73% error at 15% sequence identity. Rost (1999)
stressed the same point and reported even higher pair-
wise alignment error rates in the twilight zone. These
statistics clearly demonstrate that increasing the global
weight for distant sequences is likely to lead to the use
of misalignment, which will hamper the recognition of
true patterns. This is particularly significant if global
weighting is used in progressive alignment, because
incorrect alignments typically yield low scores, which
make the involved sequences appear to be distant, such
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that their incorrect contribution can be amplified by
increased weighting in later progressive alignment steps.

2.2. Position-specific sequence weighting

Position specific sequence weighting involves the cal-
culation of a weight for each alignment position. Al-
though, many global weighting schemes derive their
weights from averaging over positional weights calcu-
lated by position-specific schemes, the schemes are prin-
cipally designed to differentiate the contribution of
local alignment regions and aim to make use of the
most informative fragments. Various schemes have
been developed to locally adjust the contribution from
the various sequences in an alignment, e.g. pseudo-
counts (Henikoff and Henikoff, 1994) or Dirichlet mix-
tures (Sjölander et al., 1996). These convert the
observed amino acid frequencies into weights using
background amino acid probabilities and residue ex-
change weights matrices (Pietroskovski, 1996).

Sunyaev et al. (1998, 1999) devised a strategy to
construct profiles from given multiple alignments based
on a weighting scenario reminiscent to phylogenetic
parsimony methods. In their approach, amino acid
propensities at each alignment position in the alignment
profile are weighted according to the probability that
identical amino acids occur in more than one sequence
at the alignment position. If more alignment positions
show identical conservation for a given subset of se-
quences (not necessarily the same conserved amino acid
type over the alignment positions involved), the occur-
rence of the amino acids at those positions becomes
more expected, which is corrected for by appropriately
lowering the weight for the considered position. This
approach leads to position-specific sequence weights,
which are then implemented in the position-specific
propensities for each of the amino acid types in a
profile. The authors report increased sensitivity if
profile searches were performed using profiles con-
structed with this technique. However, since their
method is critically depending on which sequences are
actually chosen to represent a given protein family in
the multiple alignment, it is not suitable for progressive
multiple alignment.

2.3. Motif-based weighting

An extension of local sequence weighting can be
implemented in the N×M search matrix used in dy-
namic programming (DP), with N and M the length of
the two sequences being compared. With DP, each cell
in the matrix corresponds to a value representing the
likelihood of the matched pair of amino acids from
either sequence— typically taken from an amino acid
exchange table—and can be weighted with any source
of extraneous information.

Early on Argos (1987) weighted local diagonals in the
alignment search matrix with correlations of physical–
chemical amino acid characters such as hydrophobicity,
bulkiness, size and the like. Each matched residue
position in a local window received as a score a combi-
nation of the amino acid exchange value as given in the
PAM-250 exchange matrix (Dayhoff, 1978), and the
correlation of each of the five residue parameters calcu-
lated over a 5-residue window, each time with the
considered matched pair at the middle window posi-
tion. Although, Argos (1987) did not multiply align
sequences but mainly used the scheme to generate
visual dot plots for pair-wise protein sequence compari-
son, the approach basically weights local ungapped
alignment scores with physical–chemical features.

More recently, Bucher and Hofmann (1996) devel-
oped a statistical local alignment technique for pair-
wise sequence comparison in which each cell [i, j ] in the
DP search matrix holds the total probability that a
local alignment would pass through it. This is achieved
by summing the scores of all local alignments intersect-
ing cell [i, j ].

The multiple alignment method T-Coffee
(Notredame et al., 2000) combines information from
global and local pair-wise alignments. For each se-
quence pair, a single global alignment and 10 top-scor-
ing non-intersecting local alignments are generated,
respectively by the programs ClustalW (Thompson et
al., 1994) and Lalign (Huang and Miller, 1991). The
global and local alignment scores are then combined to
yield a synthetic weight W for each aligned pair of
amino acids, which is achieved by taking the sum of the
associated basic scores (sequence identities): W(A(x),
B(y))=� S(A(x), B(y)), where A(x) is residue x in
sequence A, and summation is over the scores S of the
global and local alignments containing the residue pair
(A(x), B(y)), while for S each time the sequence iden-
tity percentage of the associated alignment is taken.
This scenario results in a library of weights for each
non-redundant residue pair. The information in the
library is then further enhanced by a procedure called
matrix extension (Notredame et al., 2000). Each library
weight W(A(x), B(y)) is recalculated to reflect the
degree to which residues A(x) and B(y) align consis-
tently, as judged by all other library weights involving
either A(x) or B(y). This is done using a triplet
approach aimed at calculating the contribution of
third sequences I onto the direct alignment of se-
quence A and B, based on the notion that a triplet
alignment A–I–B effectively provides an alternative
alignment of A and B. Each extended score W � is then
calculated as W �(A(x), B(y))=W(A(x), B(y))+
�I�A,B Min(W(A(x), I(z)), W(I(z), B(y))), where x, y
and z are sequence positions in sequences A, B and the
intermediate sequence I, respectively, and summation is
done over all third sequences I other than A or B. The
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minimum of W(A(x), I(z)) and W(I(z), B(y) is taken
to use information from third sequences conserva-
tively. The more intermediate sequences support the
alignment of the pair, the higher becomes its extended
weight. The extended library weights W � for each
matched amino acid pair are then used to fill the DP
search matrix and align the associated input se-
quences. Library extension is performed at each step
during the progressive alignment, which is carried out
following the ClustalW protocol (Thompson et al.,
1994). The dramatic increase in sensitivity of the T-
Coffee method is mainly a result of its matrix exten-
sion scenario, which combines local and global
alignment, where an incorrect direct alignment of se-
quences A and B can effectively be overridden by
consistent alignments of other sequences acting as in-
termediates in the above triplet alignments. Notredame
et al. (2000) showed, using the BAliBASE set of refer-
ence alignments (Thompson et al., 1999a) as the stan-
dard of truth (see below), that T-Coffee generates
much improved alignments as compared to ClustalW
(Thompson et al., 1994), Prrp (Gotoh, 1996), and Di-
align2 (Morgenstern, 1999): the overall relative im-
provements measured using the column score (see
below) were 8.6, 8.6 and 17.2%, respectively.

3. Scoring alignments

Before the PRALINE alignment strategies and
benchmarking results are described, it is convenient to
first give an overview of existing modes of calculating
similarity scores of pair-wise alignments, individual
multiple alignments, and pair-wise multiple alignments,
where the latter is normally used to benchmark multi-
ple alignment routines with reference alignments.

3.1. Calculating pair-wise alignment scores

The alignment score of pair-wise sequence align-
ments is normally calculated, using a 20×20 amino
acid exchange matrix and gap penalties, as the sum of
the exchange values minus appropriate gap penalties:

Sa,b=�l s(ai, bj)−�k Nk ·gp(k)

where the first summation is over the exchange values
associated with l matched residues and the second
over each group of gaps of length k, with Nk and
gp(k), respectively the number of gaps of length k and
associated gap penalty. Using the common affine gap
penalty scheme, a gap of length k is penalised with the
value gp(k)=pi+k pe, where pi and pe are the
penalties for gap initialisation and extension, respec-
tively.

3.2. Sum-of-pairs score for single alignment

Since pair-wise alignment algorithms optimise the
above score constituted by residue exchange values and
gap penalties, an obvious way of scoring multiple align-
ments is to extend the pair-wise sequence scores to get
a single score for a multiple alignment. This is referred
to as the sum-of-pairs (SP) score for alignment. In the
early simultaneous multiple alignment method MSA
(Lipman et al., 1989), each cell in the multi-dimensional
search matrix (see above), which corresponds to a
column in the associated multiple alignment, is scored
with the SP score. This requires special gap handling
for matrix cells associated with gaps. Here, the SP score
of a multiple alignment is calculated without additional
penalties for gaps, consistent with the fact that gaps are
also ignored in the sum-of-pairs score for pair-wise
alignments (see below). For each amino acid ai,x in
sequence i and at position x in the multiple alignment,
the SP score is SP(x)=�k� l s(ak,x, al,x), where
s(ak,x, al,x) is the amino acid exchange value. Alignment
positions with gaps will be ignored in the pair-wise
summation, which will effectively lower the resulting
score. The overall SP alignment score is then calculated
by summing over the alignment positions: SP=�l�x�

N SP(x), where N is the number of aligned positions.

3.3. Sum-of-pairs and column scores for comparing two
alignments

In addition to the above SP score for single align-
ments, a pair-wise measure to determine the similarity
between a query and reference alignment is also re-
ferred to as the sum-of-pairs score: SP=�l�x�

N SP(x), where N is the number of columns in the
reference alignment and SP(x)=�k� l �(rk,x, rl,x),
where rk,x is the amino acid in sequence k at position x
in the reference alignment, and �(rk,x, rl,x)=1 if the
matched pair (rk,x, rl,x) is also matched in the query
alignment; otherwise �(rk,x, rl,x)=0. The score is com-
monly normalised using the total number of aligned
amino acid pairs in the reference alignment. The SP
score can also be weighted with amino acid exchange
values and then normalised: SP=�l�x�N �k� l

�(rk,x, rl,x) s(rk,x, rl,x)/�l�x�N �k� l s(rk,x, rl,x), where
terms and indices are as above.

However, a more salient measure than the SP score
for pair-wise alignment is the column score. In this
measure, alignment columns of the query alignment are
compared with those in the corresponding reference
alignments and only taken as correctly reproduced if
columns in query and target alignment are identical.
The column score is given as the fraction of the refer-
ence alignment columns that is correct reproduced in
the query alignment. Whereas, the SP score only gradu-
ally goes down with more misaligned sequences, a
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single misaligned sequence can effectively zero the
column score. Note that for the analysis presented
below, the column score was used.

4. The PRALINE progressive alignment strategies

4.1. General outline

The PRALINE method (Heringa, 1999) relies on the
Dynamic Programming (DP) technique for pair-wise
sequence alignment, introduced by Needleman and
Wunsch (1970) to the biological community. Input
parameters for the DP algorithm are an amino acid

substitution weights matrix and a gap opening and
extension penalty value. The latter are applied each
time when a gap is inserted in one of the sequences.
Based on these parameters, the DP procedure is guar-
anteed to produce the optimal alignment of two se-
quences. For carrying out progressive multiple
alignment with PRALINE, the basic DP routine is
adapted for sequence–profile and profile–profile align-
ments. The PRALINE method does not use a pre-cal-
culated search tree as do many progressive alignment
methods (e.g. Hogeweg and Hesper, 1984; Thompson et
al., 1994; Gotoh, 1996; Notredame et al., 2000) but
performs at each alignment step a full profile search
and compiles the optimal alignment score of the se-
quence block aligned in the preceding step with all
other blocks and hitherto unaligned sequences. For the
current alignment step it then selects the highest scoring
pair of sequences or blocks of sequences to be aligned.
The alignment order is thus established during the
progressive alignment, such that a tree associated with
the alignment order becomes only available upon com-
pletion of the alignment. The PRALINE method offers
a number of strategies based on dynamic programming
to optimise multiple alignment. Here, three of the
strategies are included: global and local profile pre-pro-
cessing, and local–global double dynamic program-
ming. The first two strategies can be classified as
position specific sequence weights, while the latter falls
in the category of motif-based weighting schemes.
Global and local profile pre-processing allow the calcu-
lation of a reliability index for each amino acid in the
resulting multiple alignment, based on the consistency
of pair-wise alignments. This, and iterative modes rely-
ing on the reliability indices, will also be described.

4.2. Global profile pre-processing

The profile pre-processing strategy in the PRALINE
method (Heringa, 1999) is a position-specific weighting
scheme aimed at incorporating into each sequence,
trusted information from other sequences. For each
sequence, a multiple alignment is created by stacking
other sequences (master-slaves alignment) that score
beyond a user-specified threshold after pair-wise align-
ment with the sequence considered (Fig. 1). A low
threshold would result in a pre-processed alignment for
each sequence comprising all other sequences (where
the chance for alignment error is large), while higher
thresholds would allow the information from lesser
sequences into the alignment (with fewer alignment
errors). The use of a cut-off value for alignment scores,
rather than alignment identity or length-normalised
similarity values is in agreement with the analysis of
Abagyan and Batalov (1997), who showed that align-
ment scores allow the best discrimination between
alignments of structurally related and unrelated se-

Fig. 1. Profile pre-processing and subsequent pre-profile align-
ment. The top panel shows a schematic outline of the con-
struction of pre-processed profiles (pre-profiles) for five
sequences. Pair-wise alignments are used to construct the five
master-slaves alignments (pre-alignments), which are identified
by the order number of their key sequence. The pre-profiles
are compiled from the pre-alignments. The bottom panel
shows how the pre-profiles are used to construct the final
multiple alignment of the five original sequences. Note that for
clarity, the pre-profiles depicted here all contain the total
number of five sequences. In practice, setting the alignment
score threshold value can lead to deletion of sequences from
pre-processed blocks and associated pre-profiles.
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Fig. 2. Global profile pre-processing. An example is included of two pre-processed alignments for the sequences with PDB codes 2fcr
and 4fxn. The sequences are taken from a data set of 13 flavodoxin sequences combined with the cheY sequence (PDB code 3chy).
Pre-processing was effected with a score cut-off set at zero, thus allowing all remaining sequences in each pre-profile. Note that the
key (or master) sequence in each of the two blocks (2fcr and 4fxn, respectively) contain no gaps, amino acids appearing opposite
gaps in the key sequences are deleted from the added (slave) sequences in the pre-processed alignments.
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Fig. 3. Outline of local profile pre-processing. Shown are the
first two highest-scoring local alignments with excluded associ-
ated matrix regions designated in grey: descriptions of the dark
and light grey regions are given in the text. White matrix
regions without alignments can either be filled with lower
scoring top alignments, or remain blank if a threshold score
value is used and no further local alignments score beyond the
threshold.

ing local fragments within the sequences, and in addi-
tion to rejecting the information from low scoring
sequences as can be done in global pre-processing, now
also information can be discarded from sequence re-
gions that cannot be trusted to contribute reliable infor-
mation. This is achieved by a simple protocol that
selects for each pre-processed profile the best sequence
regions from sequences that are candidates for inclusion
in the profile. The protocol is based on the local
alignment algorithm of Smith and Waterman (1981).
For each cell in the N×M search matrix, the following
function is evaluated for two sequences A=
(a1, a2, …, aN) and B= (b1, b2, …, bM):

H [i, j ]=Max

�
�
�
�
�

H [i−1, j−1]+s [ai, bj ]
Max{H [i−x, j−1]−P(x)}
Max{H [i−1, j−y ]−P(y)}

0

�
�
�
�
�

(2)

where H [i, j ] is guaranteed to hold the maximum simi-
larity of two segments ending in ai and bj, s [ai, bj ] is the
value for substitutions between residue types ai and bj,
and P(x) is the penalty for insertion of a gap of length
x. Note that to convert a local alignment routine into a
global algorithm, only the zero in (Eq. (2)) needs to be
discarded. For local dynamic programming, the amino
acids exchange matrix used must include negative val-
ues s [ai, bj ], otherwise global alignment will occur. The
local alignment algorithm thus relies on dissimilar sub-
sequences producing negative scores, which are subse-
quently discarded by placing zero values in the
associated search matrix cells. After calculation of the
search matrix by the above procedure, the local align-
ment corresponding to each non-zero cell in the search
matrix can be obtained by a traceback procedure.
Whereas, Smith and Waterman (1981) selected the opti-
mal local alignment by performing the traceback only
on the highest scoring matrix cell H [i, j ], Waterman
and Eggert (1987) modified the traceback step to in-
clude a set of top-scoring non-intersecting alignments,
i.e. having no matched amino acid pair in common.
However, at each step in the traceback procedure for a
local alignment that is being tested for inclusion in the
top-scoring list, the currently matched residue pair must
be checked against all matched pairs within the local
alignments contained in the top-scoring list at that
moment, which is computationally demanding. A result
of this approach is that for a sequence A and B being
compared, there can be more than one matched residue
pair within the top-scoring alignments containing either
residue ai(l� i�N) or bj(l� j�M). With our pre-pro-
cessed profile approach with one line for each included
sequence, this would lead to ambiguities in residue pair
selection. Therefore, an alternative scenario was devel-
oped to avoid this selection problem and speed up
computation at the same time. In this scenario, which is

quences. For each of the thus formed pre-processed
alignments, a profile is constructed (Fig. 1). The PRA-
LINE method then performs progressive multiple align-
ment using the pre-processed profiles, where each
sequence is now represented by its pre-processed
profile. To do this, the pair-wise alignment step is
repeated over all pre-processed profiles, after which
progressive alignment takes place. The pre-processed
profiles for each of the sequences incorporate knowl-
edge about other sequences (in particular similar se-
quences) and comprise position-specific gap penalties.
This enables increased matching of distant sequences
and likely placement of gaps outside the ungapped core
regions in the pre-processed profiles during progressive
alignment. While more details about global profile pre-
processing can be found in Heringa (1999), Fig. 2
includes an example of two pre-processed sequence
blocks. These are taken from a set of 13 distant flavo-
doxin sequences and the cheY sequence (Heringa,
1999), the latter being a signal transduction protein,
which displays extremely low sequence similarity but
nevertheless adopts the flavodoxin fold. The alignment
score cut-off value can be specified by the user as the
direct alignment score. Alternatively, it can be specified
as a factor related to the aligned sequence lengths:
S�xL, where x is the score threshold factor and L the
length of the shortest matched sequence. This renders a
score threshold that is linearly related to the alignment
length, which is in agreement with the observation
made for global similarity scores for random sequences
(for a review, see Yona and Brenner, 2000).

4.3. Local profile pre-processing

The selection of sequences based on their overall
pair-wise alignment scores can be extended by scrutinis-
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outlined in Fig. 3, after performing the forward local
dynamic programming step, the local alignment scores
are ordered from high to low. Then the highest scoring
alignment is selected and is traced back to obtain the
pair-wise residue matches. The regions of the sequences
corresponding to this alignment are then considered
occupied by the local alignment and are effectively
locked so to not allow any more alignments in this
region (dark grey matrix regions in Fig. 3). Then the
procedure is repeated for lower scoring local alignments
that do not enter the locked matrix region. It is possible
in principle to allow local alignments that would cross
already accepted top alignments. For example, a local
alignment j could include one sequence region posi-
tioned N-terminally of a sequence fragment within an
accepted local alignment i, while the other sequence of
j covers a region C-terminal of alignment i. However,
since this would lead to motif inversions, which compli-
cate the global multiple sequence alignment technique,
these regions are disallowed by default in the local
pre-processing procedure (light grey matrix regions in
Fig. 3). This means that for each considered local
alignment, the matched amino acid pairs (x, y) should
be compared with all earlier accepted alignments. How-
ever, the comparison is more straightforward than in
the approach by Waterman and Eggert (1987). If an
earlier alignment would span residue ai to aj in se-
quence A and residue bk to bl in sequence B, either the
condition (x�ai and y�bk) should be met, or (x�aj

and y�bl). As a result of this local scenario carried out
for each of the input sequences, the pre-processed profi-
les contain added sequences from which low scoring
regions are deleted. The user must specify a local
alignment cut-off score, so that only sequence frag-
ments that locally align to the query sequence with a
score above the cut-off value are included in the locally
pre-processed profile. Fig. 4 shows an example of two
locally pre-processed alignments, corresponding to
those in Fig. 2 for global pre-processing. Due to the
global relationship of the sequences, no sequence
stretches matching middle regions of the key (or mas-
ter) sequence have been discarded, but the use of infor-
mation from the distant cheY sequence has been clearly
reduced for the two sequences (Fig. 4).

4.4. Local–global DDP alignment

The local alignment-driven global alignment strategy,
which falls in the class of motif-based weighting
schemes (see above) operates in two steps (Fig. 5):
First, for each possible residue match between two
sequences (or sequence blocks), the score of the optimal
local alignment including that match is calculated.
Then, the optimal global alignment is compiled based
on these local alignment scores. This two-step align-
ment strategy is akin to the double dynamic program-

ming (DDP) protocol first implemented in the protein
structure superpositioning algorithm SAP (Taylor and
Orengo, 1989). The strategy can be viewed as a short-
cut of the T-Coffee scenario described above
(Notredame et al., 2000), as it ensures that the global
alignment is biased towards matching local motifs,
though using the local signals as soft constraints only.
The strategy can be useful when local sequence similar-
ity is suspected (for example in cases of very different
sequence lengths). For each pair of sequences or se-
quence blocks, it uses the classical Smith and Water-
man (1981) local alignment algorithm based on the
dynamic programming protocol (Needleman and Wun-
sch, 1970). The idea is to determine for each matched
pair of amino acids the score of the best local alignment
over all those that include the pair. The thus obtained
scores are then assigned to a search matrix as weights
and subsequently subjected to a global alignment
round, which resolves the values in a final global align-
ment that is biased towards local alignment.

In the Smith–Waterman algorithm, which is ex-
plained above, the local alignment corresponding to the
highest scoring matrix cell H [i, j ] is determined by a
traceback step. However, to meet our objective of
calculating the score of the best local alignment for
each matrix cell, for all or most of the N×M matrix
cells, the traceback step would have to be performed
and the corresponding score of the best local alignment
substituted in the cell considered. This would be pro-
hibitive in the context of multiple sequence alignment.
Therefore, we devised the following shortcut to obtain
the alignment score for each cell in the matrix without
carrying out the traceback steps as shown in Fig. 5.
Local dynamic programming is performed in forward
and in backward direction of the sequences. Then, the
values of the resulting two DP search matrices are
added for each cell with subtraction of the local score
s [ai, bj ] to avoid double counting of the local substitu-
tion value due to two times applying Eq. (2) for each
cell [i, j ]. After this operation, each cell in the resulting
matrix shows the score of its best corresponding local
alignment.

The thus obtained weights for each amino acid ex-
change of the two sequences are subjected to a second
round of dynamic programming, this time to find the
optimal global alignment (Gotoh, 1982) based on the
local alignment scores (Fig. 5, step 2). A number of
operations are available in the PRALINE method to
scale the raw scores resulting from the local alignment
step before the second global alignment step is effected.
These include converting each score in the matrix to the
z-score derived from the values in its corresponding
row and column; converting the weights to logarithmic
values; and adding the normalised weights to the
residue exchange value corresponding to the search
matrix cells.
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Fig. 4. Local profile pre-processing. An example is included of two pre-processed master-slaves alignments for the sequences with
PDB codes 2fcr and 4fxn, corresponding to those in Fig. 2. The local alignment cut-off score was set at zero, so that all sequences
are represented in each of the two pre-processed blocks and short local fragments are selected for some of the sequences. Deleted
sequence regions are indicated by dots to discern them from gap regions within accepted local top alignments.
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4.5. Consistency-based alignment iteration

The globally or locally pre-processed profiles can be
used to derive consistency scores for each amino acid
in the final multiple alignment, reflecting the consis-
tency among the pair-wise alignments included in all
the pre-processed profiles. The consistency scores are
based on the extent to which the residue appears at
the same alignment position across its corresponding
identical sequences in the other pre-processed align-
ments (Fig. 1). The number of sequences allowed into
the profiles during global pre-processing and the
number of fragments selected during local pre-pro-
cessing (Section 5) influences the consistency scores:
the higher the cut-off values, the less corresponding
identical amino acids there are within other pre-pro-
cessed profiles, which in turn will tend to increase the
consistency scores as fewer but more similar se-
quences or sequence fragments are being used. The
consistency scores can be used in an iterative strategy,
designed to give preference to consistent alignment
regions in subsequent alignment rounds (Fig. 6, top
panel: consistency iteration). This is achieved by using
the reliability scores as residue weights in the align-
ments performed in the next iteration round (Heringa,
1999). Another possible iterative strategy updates the
aligned sequences in the pre-processed alignments
based on their placement in the multiple alignment of
a preceding alignment round (Fig. 6, bottom panel:
pre-profile update iteration). Although likely, iteration
is not guaranteed to lead to convergence. The three
possible outcomes of iteration are: (i) convergence to
a single multiple alignment; (ii) limit cycle behaviour,
where iteration after a number of iterations reaches
an alignment that has been generated before, and

Fig. 6. Iteration of pre-profile multiple alignment. The top
panel outlines schematically the consistency iteration protocol.
The upward arrows at the right hand side indicate how the
positional consistency scores for each multiply aligned se-
quence are copied into a vector for each pre-processed profile.
The alignment can then be refined during subsequent iterations
using the weights given in the profile vectors in each DP
alignment during the progressive alignment protocol (down-
ward arrow). After each alignment iteration, the consistency
scores are recalculated and the profile weight vectors updated.
The bottom panel depicts the pre-profile update iteration
protocol. At each iteration, the pre-profiles are updated by
using the multiple alignment resulting from the preceding
iteration to position each sequence included in every pre-align-
ment under its key sequence. For each thus updated pre-align-
ment, a new pre-profile is constructed and a new round of
progressive alignment is initiated.

Fig. 5. Local–global DDP. (1) Summation of local DP search
matrices resulting from forward and reversed local DP. For
this step, a residue exchange matrix, and a gap open and
extension penalty are required (M+Po,e). (2) Second step of
global DP to find the highest-scoring global alignment based
on all best local alignment scores. No residue exchange matrix
is needed for this step, and gap opening and extension penalty
are set to zero (no M or Po,e). For details, see text.

then goes on repeating the iterative steps in between
the two identical alignments; and (iii) divergence. The
latter is declared when no conversion or limit cycle
behaviour is reached. With the PRALINE method,
the maximum number of iterations must be specified,
but within this number of iterations, both conver-
gence and limit-cycle behaviour is traced, upon which
iteration is terminated. An additional option is to se-
lect, from all alignments constructed during iteration,
the one with the highest SP score (see above). This
option, called SP selection, is designed to control
those iterations where alignments would wander away
in alignment space to lower SP scores.
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Fig. 7. Flavodoxin-cheY normalised multiple alignment Sum-of-Pairs (SP) scores versus total number of sequences included in the
14 pre-processed profiles resulting from varying the pair-wise alignment cut-off scores. The solid line (with triangles) denotes the SP
scores, while the dashed line (squares) designates the number of identical pairs encountered in the alignments. Both the SP scores
and the number of identical pairs scores have been normalised to the maximum found, multiplied by 100.

5. Tuning and evaluating the alignment strategies

5.1. Reference database

Evaluation tests were performed using the BAliBASE
multiple alignment benchmark set (Thompson et al.,
1999b) as the standard of truth. The BAliBASE align-
ments are placed in five different categories, which are
supposed to cover most of the problems the alignment
engines are faced with: (1) alignments containing
equidistant sequences; (2) alignments with a single or-
phan sequence; (3) alignments comprising two distant
groups; (4) alignments containing long deletions; and
(5) alignments containing long insertions.

5.2. Tuning threshold �alues for profile pre-processed
alignment

Can alignment score cut-off values be found that are
generally optimal for global or local pre-processing?
Fig. 7 shows, taking the flavodoxin–cheY data set as
an example, the relation between the pair-wise align-
ment cut-off scores for global pre-processing and the
SP scores (for single alignment) of each of the align-
ments produced. The alignments were made for a set of
distant flavodoxin sequences and the extremely distant
cheY sequence (Heringa, 1999), a signal transduction

protein which nonetheless adopts the flavodoxin fold.
The figure shows that the SP scores of the alignments
do not display a uniform behaviour: A similar pattern
is found for the number of identical pairs found in each
of the alignments (Fig. 7). The variation of the SP
scores is slightly over 2% and that of the identities
about 6%. The flavodoxin-cheY alignment example il-
lustrates that it is unlikely to derive an easy optimisa-
tion protocol for setting a fixed cut-off value for global
pre-processing in individual alignments. However, Fig.
8 shows the pair-wise alignment scores of all possible
sequence pairs in each of the BAliBASE alignments
versus the length of the shortest sequence in each of the
pairs, displaying a linear relationship. Consequently,
global pre-processing was tested with alignment score
threshold values specified linearly related to the se-
quence length: S�xL, where S is the alignment score,
x the specified cut-off value and L the length of the
shortest sequence. This means that the higher the value
of x, the higher the alignment score S needs to be in
order for the target sequence to be included in the
pre-processed profile. The same holds for the threshold
value for local profile pre-processing, although to a
lesser extent, because here a more gradual effect be-
tween the threshold value and inclusion of sequence
fragments is observed (data not shown). Moreover,
local similarity scores are known not to grow linearly
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Fig. 8. BAliBASE pair-wise alignment scores versus the minimum sequence length of each sequence pair, aligned using the
BLOSUM62 amino acid exchange matrix and penalties of 12 and 1 for gap opening and extension, respectively. The slope of the
regression line is 11.0.

with the sequence length, but with the logarithm of the
product of the sequence lengths (Karlin and Altschul,
1990).

5.3. Measuring alignment accuracy

Over a total of 144 BAliBASE reference alignments
(version of July 2000), alignments generated by the
PRALINE method were compared using column scoring
(see above), i.e. alignment columns of the target align-
ments were compared with those in the corresponding
reference alignments and were only taken as correct if
columns were identical. Following Notredame et al.
(2000), the column scores were evaluated only over
alignment regions that were deemed to be reliable by the
BAliBASE curators, who defined for each BALiBASE
alignment the trusted regions. The PRALINE strategies
were evaluated using a 500 MHz Pentium III cluster under
the Linux operating system. We tested global and local
profile pre-processing over the 144 BAliBASE align-
ments, and also ran the PRALINE consistency iteration
protocol, with and without SP selection (see above).

5.4. Accuracy of global pre-processing

Table 1 shows the accuracy numbers generated under
a number of score cut-off values for global pre-process-
ing. It is clear that global profile pre-processing increases

the quality of the alignments produced, compared to the
PRALINE default setting without pre-processing, a
maximum gain of 3.5% (weighted average) and 6.5%
(unweighted average) for S�L 9.5, where S is the
alignment score and L the length of the shortest sequence
in the pair-wise alignment. The greatest variation in
accuracy percentages is observed for the BAliBASE
categories 4 and 5 (long deletions and insertions, respec-
tively).

The weighted average accuracy is further increased by
2.5% when iteration is applied. The best result is obtained
using iteration and SP selection for S�L 9, resulting in
65.35% weighted and 56.68 unweighted accuracy. SP
selection enhances the accuracy in all categories except
for S�L 9.5, which shows a decline in accuracy of nearly
3% for BAliBASE category 4. Overall, the best scores for
each of the categories was reached when iteration was
performed, except for category 5, where both S�0 and
S�L 9.5 attain the highest accuracy of 76.12%. Also,
iteration for category 5 results in lower accuracy values
for all tested cases. Although, SP selection improves the
iteration by 6.5% or more, it does not reach the accuracy
values observed for the non-iterative runs.

5.5. Accuracy of local pre-processing

Local pre-processing was tested by varying the align-
ment cut-off score of the local alignments, results of
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Table 1
Benchmarking various Praline global pre-processing conditions

Cat 2 (23) Cat 3 (12)Method Cat 4 (15)Cat 1 (82) Cat 5 (12) Total 1 (144) Total 2 (144)

27.04�19.95 49.38�20.50 29.13�36.17default 59.53�30.0077.07�27.14 60.32�34.31 48.43�18.84
28.80�22.66S�0a 45.26�21.5378.37�28.27 18.93�30.83 76.12�23.22 61.31�35.79 49.50�24.18
28.05�23.00 52.07�23.31 27.47�39.2877.45�30.03 74.37�27.69S�L*8 61.98�36.51 51.88�21.56
32.54�24.95 54.24�26.29 27.67�37.13S�L*8.5 76.12�23.2278.71�27.12 63.76�34.68 53.86�21.23
32.03�22.26 52.07�18.79 31.21�39.1678.89�26.68 74.37�27.69S�L*9 63.83�34.06 53.71�20.20

77.71�26.83S�L*9.5 31.27�24.42 54.28�17.64 37.88�41.71 73.76�25.48 63.86�33.63 54.98�18.57
29.61�19.13 46.11�23.07 35.80�39.2777.72�27.55 70.42�27.77S�L*10 62.43�34.15 51.93�18.97
27.52�19.65 49.65�17.56 27.33�36.79 64.13�25.28S�L*11 60.55�34.0076.96�27.18 49.12�19.71
26.84�19.13 48.59�23.63 27.47�36.89 63.38�28.3176.96�27.06 60.30�34.52S�L*12 48.65�19.71

S�0 Wghtiter 79.10�27.62 29.93�22.49 38.27�25.65 34.68�37.34 68.89�21.43 62.37�34.83 50.17�19.90

78.60�27.71 28.80�22.66 45.07�21.30S�0 34.68�37.34 75.88�23.26 63.05�34.60 52.61�20.80
WghtiterSP

S�L*9 79.41�26.74 31.84�22.67 54.39�19.41 42.12�40.87 66.01�28.37 64.73�33.46 54.75�16.85
Wghtiter

78.91�26.69 32.64�22.06 55.62�18.35S�L*9 42.12�40.87 74.12�27.71 65.35�33.10 56.68�17.83
WghtiterSP

77.92�26.93 30.93�24.09 55.92�19.58S�L*9.5 45.04�43.26 67.28�33.26 64.28�33.26 55.44�16.48
Wghtiter

77.92�26.86 33.47�23.17 56.31�18.99 42.12�40.87S�L*9.5 73.52�25.50 64.92�32.80 56.67�17.24
WghtiterSP

In the column ‘Method’, S�L*x means that only sequences are included in the pre-processed blocks and profiles whenever their
alignment score with the key sequence is higher than x times the length of the shortest sequence in the aligned pair (L); ‘Wghtiter’
indicates that consistency-based iteration is applied; and ‘WghtiterSP’ that SP selection is performed during iteration. The pair-wise
alignment scores were calculated using the BLOSUM62 residue exchange matrix with 12 and 1 as gap opening and extension
penalties, respectively. Accuracy numbers are given as average�S.D. The numbers in brackets in the BAliBASE category headers
denote the number of alignments in each category. Total 1 is the weighted average accuracy over 144 alignments, while Total 2
designates the unweighted accuracy, averaged over the five categories.

a S�0 is equivalent to S�L*7, i.e. all BAliBASE inter-alignment pair-wise sequence alignments calculated by PRALINE, score
on average at least seven points per alignment position: note that the BLOSUM62 matrix used was made non-negative by adding
eight to all exchange values.

Table 2
Comparing various Praline local pre-processing conditions

Cat 2 (23) Cat 3 (12) Cat 4 (15)Method Cat 5 (12)Cat 1 (82) Total 1 (144) Total 2 (144)

30.65�22.34 53.15�25.79LS�0 37.76�39.4778.59�26.18 83.84�21.98 65.00�33.77 56.78�21.30
30.60�22.20 59.43�20.91 37.67�39.4779.14�25.03 83.84�21.98LS�50 65.81�32.96 58.14�21.36
30.20�24.63 49.04�24.91LS�100 37.67�39.4778.88�26.25 83.84�21.98 64.74�34.28 55.93�21.67
25.52�21.54 50.59�25.38 26.21�35.76 77.73�28.5876.62�28.56 61.13�35.96LS�300 51.33�22.95

LS�0 77.94�27.62 26.29�21.38 39.87�21.47 45.05�36.95 72.22�26.70 62.61�34.27 52.27�19.68
Wghtiter

LS�0 78.74�26.15 30.65�22.34 53.15�25.79 41.91�38.61 83.84�21.98 65.51�33.35 57.66�20.63
WghtiterSP

77.96�26.78 25.84�21.53 36.47�24.12LS�50 45.05�36.95 72.22�26.70 62.27�34.34 51.51�20.28
Wghtiter

79.24�25.08 30.60�22.20 59.43�20.91 41.91�38.61 83.84�21.98LS�50 66.31�32.55 59.00�20.62
WghtiterSP

The table format is identical to that of Table 1. Under Methods, LS�x means that local sequence fragments are accepted in the
pre-processed alignments only if their corresponding local alignment score (LS), from alignment with the key sequence, has a value
of x or greater. The compilation of the local alignments was done using the BLOSUM62 matrix and gap penalties of value 12 and
1 for gap opening and extension, respectively.
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Table 3
ClustalW, T-Coffee and best PRALINE performance over the BAliBASE benchmark set

Cat 2 (23) Cat 3 (12) Cat 4 (15)Cat 1 (82) Cat 5 (12)Method Total 1 (144) Total 2 (144)

32.66�22.26 48.64�20.08 41.66�42.8578.15�24.33 61.33�29.74ClustalW 63.22�32.52 52.48�15.88
77.42�28.99T-Coffee 34.61�23.74 51.34�27.31 53.49�37.77 92.23�9.64 67.15�33.30 61.82�20.44

S�L*9 78.91�26.69 32.64�22.06 55.62�18.35 42.12�40.87 74.12�27.71 65.35�33.10 56.68�17.83
WghtiterSP

79.24�25.08 30.60�22.20 59.43�20.91 41.91�38.61LS�50 83.84�21.98 66.31�32.55 59.00�20.62
WghtiterSP

79.41�26.74 33.47�23.17 56.31�18.99Best global 45.04�43.26 76.12�23.22 66.29�26.95 58.07�17.66
prepro

79.24�25.08 30.65�22.34 59.43�20.91Best local 45.05�36.95 83.84�21.98 66.65�23.45 59.64�19.04
prepro

79.41�26.74Best overall 33.47�23.17 59.43�20.91 45.05�36.95 83.84�21.98 67.20�26.35 60.24�19.35

The table format is identical to Table 1. All entries under ‘Method’ other than ClustalW or T-Coffee refer to PRALINE results.
‘Best global prepro’ lists the best PRALINE scores reached for each BAliBASE category under global pre-processing (Table 1), ‘Best
local prepro’ lists those under local pre-processing (Table 2), while ‘Best overall’ shows the best category scores over the global and
local strategies tested.

which are given in Table 2. Overall, the added advan-
tage of discarding the contribution from non-matching
sequence fragments enhances the accuracy of the align-
ments beyond the level attained by global pre-process-
ing. The best result is reached for LS�50, which
allows the contribution from all local alignments result-
ing from the selection protocol but the shortest frag-
ments, with an alignment accuracy of 65.8% (weighted
average) and 58.14% (unweighted average). This
amounts to a quality increase of 5.5 and 9.7% com-
pared to PRALINE default conditions, for weighted
and unweighted mean values, respectively.

Iteration was performed for local alignment score
threshold values of 0 and 50. It is clear that selecting
the aligment with the best SP scores during iteration
(SP selection), prevents the alignments from wandering
away from the reference alignment. As with global
pre-processing, SP selection does not perform well for
category 4 aligments: while for four of five BAliBASE
categories higher accuracy values are obtained, align-
ments of category 4 do better under iteration without
the SP selection criterion. The best overall result is
obtained with LS�50 using iteration with SP selection,
resulting in 66.3 weighted and 59.9% unweighted accu-
racy. However, for individual categories and compared
to non-iterative runs, iteration only optimises category
4 by seven percentage points, whereas in the other
categories, iteration does not lead to an improvement.

5.6. ClustalW, T-Coffee and PRALINE performance

Table 3 gives the accuracy values for ClustalW and
T-Coffee methods as well as the overall best results of
PRALINE. While it is clear that T-Coffee is the most
reliable method overall, with values of 67.1 and 61.8%

for weighted and unweighted mean accuracy, respec-
tively, PRALINE comes within 1% point of the
weighted mean when local pre-processing is used (LS�
50) in conjunction with iteration under SP selection.
While T-Coffee manages to get the best scores of the
three contenders for the categories 2, 4 and 5, PRA-
LINE attains the best scores for category 1 and 3. If the
best overall category scores by PRALINE are taken,
PRALINE attains the same overall weighted average
accuracy as T-Coffee. The largest differences between
T-Coffee and PRALINE occur for the categories 4 and
5. Due to the T-Coffee motif-based weighting scheme
and zero gap penalties for its dynamic programming
run over the extended matrices (see above), it is rela-
tively easy for T-Coffee to insert large insertions–dele-
tions during progressive alignment.

6. Discussion

6.1. PRALINE protocols

In this paper, three protocols for multiple alignment
have been described: global and local pre-processing,
and double dynamic local–global programming. Pre-
processing is aimed at using information from trusted
sequences to optimise the representation of each of the
query sequences in a profile, thereby also creating posi-
tion-specific gap penalties for each sequence, before the
actual progressive alignment takes place. The pre-pro-
cessing protocol is used to calculate a consistency score
for each residue in the multiple alignment. The consis-
tency scores can be used to probe the multiple align-
ment, but they are applied here in an iterative strategy,
and used to increase the weights of the associated
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residues in the next iteration round (Fig. 6). This leads
to alignment biased to consistent regions, where less
consistent intervening regions are more likely to be
re-aligned. The iterative strategy in PRALINE, based
on global or local pre-processing, thus relies on the
consistency of the multiple alignment as compared to
optimal pair-wise alignment of the query sequence set.

6.2. E�aluation criteria and standard of truth

Evaluating multiple alignment programs is a complex
issue. First of all, there is no general agreement as to
what the standard of truth should be. For instance,
should an alignment be evaluated using evolutionary,
structural, or functional criteria? Although, in closely
related familial sequences these criteria are expected to
lead to the same alignment, in more distant cases they
can result in very different answers. Moreover, bench-
marks are usually carried out using a set of reference
alignments, so that the evaluation becomes crucially
dependent on the quality of such a reference alignment
database. Furthermore, different ways have been pro-
posed to quantify the agreement between a proposed
and a reference alignment, such as weighted or un-
weighted sum-of-pairs scores, column score, etc. A
multiple alignment in a sense can be viewed as a
somewhat desperate attempt to obtain a unified picture
of the relatedness of a set of sequences by averaging out
matched residues that possibly cannot be consistently
matched over the entire lengths of the sequences. This
is because evolution, through mutations, insertions and
deletions of sequence fragments, works on spatially and
temporary de-coupled molecules, so that sequence
alignment incompatibilities can well arise under diver-
gent evolution, particularly with widely diverged
sequences.

6.3. SP scores as objecti�e function

As in most bioinformatics methods, multiple align-
ment techniques have two major components: the
search function and the cost (or objective) function. In
many algorithms, the cost function is considered the
central problem. However, in this work, both issues are
addressed in the iterative scheme (search function),
which is based on alignment consistency and optionally
on SP scores (objective functions) to optimise alignment
quality. The objective function should approach the
biological truth and require an in-depth knowledge of
the evolutionary and structural– functional relation-
ships within each individual family, which might well
turn out to be impossible to generalise in a single
scheme. To illustrate this point for the widely used SP
scoring system (for single alignments), SP scores were
calculated for each of the BAliBASE benchmark align-
ments. These scores were then compared to correspond-

ing SP scores of the alignments calculated under
PRALINE default conditions; i.e. generated without
pre-processing or iteration, by calculating the difference
between the reference SP score and that of the corre-
sponding PRALINE alignment (�SP=SPRef−
SPPRALINE). For just over a quarter (27%) of the
BAliBASE alignments, the corresponding PRALINE
alignments attain larger SP scores, while for the larger
alignments (Nseq L�4500) the fraction grows to 52%
(Fig. 9). This might be referred to as the ‘Charlie
Chaplin’ problem.2 It is clear that trying to optimise the
SP score for alignments that already score higher than
their corresponding reference alignments is not likely to
lead to convergence to the latter alignments.

6.4. Alignment optimisation by iteration

Notwithstanding the above, it has been shown here
that consistency-based alignment iteration bound by SP
scores (SP selection), can well optimise the quality of
the resulting alignments. The alignments are driven
through alignment space during iteration by a consis-
tency-based protocol (see above). The consistency mea-
sure is different from the SP scores in that it is not
based on highly scoring matched residue pairs, accord-
ing to an amino acid exchange matrix, but assesses each
amino acid by comparing the agreement between a
multiple alignment and the associated optimal pair-wise
alignments. If this agreement is high for certain align-
ment areas, these will be upweighted and have a higher
chance to be aligned again in a next iteration round,
such that other regions will effectively be realigned
based on their consistency values. However, the accu-
racy of the generated alignments is measured here by
column scoring over BAliBASE reference alignments,
which does not incorporate any notion of consistency,
so that successive iterative alignments could show uni-
formly decreasing SP scores (for single alignment). In
such a case, SP selection would effectively undo the
iteration by selecting the first alignment. We found that
SP selection leads to better iterative alignments in the
majority of BAliBASE categories, and in all cases opti-
mises the overall accuracy scores compared to iteration
without SP selection. Iterating globally pre-processed
alignments with SP selection leads to a further gain in
accuracy over consistency iteration without SP selec-
tion, of less than a percentage point (Table 1). After
local pre-processing, iteration with SP selection results
in an overall further increase of up to 4% (weighted
mean) or 7% (unweighted) over consistency-based itera-
tion alone (Table 2). However, iteration after local
pre-processing leads to lower overall accuracy values
than corresponding non-iterative runs, such that itera-

2 At the peak of his fame, Charlie Chaplin allegedly entered
a Charlie Chaplin contest in disguise and became second.
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tions which wander away in alignment space need to be
controlled by SP selection. Moreover, for most individ-
ual BAliBASE categories, local pre-processing without
iteration leads to alignments with the same accuracy as
the iterative modes. On the other hand, category 4, for
which the least accurate alignments are produced in
general, is generally about 3 percentage points better
aligned using iteration without SP selection (Table 2).
These results underline the complex relationship be-
tween consistency-based iterative optimisation, with or
without SP selection, and reference alignment-based
column scoring. A quarter of the BaliBASE alignments
have SP scores that are already lower than PRALINE
default alignments, generated without pre-processing or
iteration (Fig. 9). On the other hand, disregarding
‘neutral’ alignments with �SP scores close to zero,
about half the BAliBASE alignments show higher SP
scores, so that SP selection would be expected to drive
these alignments closer to their associated references.

6.5. Redundancy in BAliBASE

Although the BAliBASE alignment set (October,
2000) comprises 144 alignments, the number of differ-
ent biological cases is in fact much lower, because many
protein families have been re-used through the various
BAliBASE categories. This effectively renders the data
set critically small for reliable performance evaluation

of multiple alignment programs. A particular risk arises
when the database is used to tune the internal parame-
ters of an alignment method, as over-fitting becomes
highly likely. This would lead to a method that is highly
effective when faced with most of the BAliBASE align-
ments, but would show a steep drop in accuracy when
calculating an alignment unseen in the training phase.
For example, the CLUSTAL alignment suite comprises
a large number of carefully handcrafted heuristics
driven by an extensive internal parameter set, which
could render it prone to over-training. The CLUSTAL
parameters have been tuned over BAliBASE since the
creation of the latter by the CLUSTAL authors (Hig-
gins, personal communication; Notredame et al., 2000)
(Table 3).

6.6. Using PRALINE

PRALINE is a toolkit designed to allow the user to
experiment with various strategies. If profile pre-pro-
cessing is performed, the user can vary the consistency
stringency by selecting the threshold for inclusion of
global or local alignments. Compared to T-Coffee and
ClustalW, which have established internal parameter
settings, PRALINE is able to make the best individual
alignments compared to the BAliBASE alignments,
when given proper global or local pre-processing
threshold parameters. However, for a user who wishes

Fig. 9. Percentage BAliBASE alignments with �SP=SPPraline−SPRef�0, i.e. for which the PRALINE alignments attain higher SP
scores than their BAliBASE counterpart, versus the number of BAliBASE alignments with size �x. The size of the alignment is
given as the product of the alignment length and the number of sequences.
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to construct a multiple alignment without tuning, T-
Coffee is currently the best general tool, as it is rela-
tively fast, robust and generates alignments with a high
and sustained quality (Table 3). It is clear that an
interface, which would be able to recognise the type of
alignment problem in the sense of the BAliBASE cate-
gories, and accordingly activate a PRALINE mode or
the T-Coffee algorithm, would lead to further gains in
accuracy.

6.7. Local–global DDP

Although, general benchmarking using the BAl-
iBASE depository has yet to be carried out for the
local–global DDP strategy, it has proven successful in
a number of individual cases, for instance the alignment
of the synaptobrevin family (Langosch, unpublished
results). The approach is expected to do well in cases
such as the categories 4 and 5 in the BAliBASE depos-
itory, which are the categories where T-Coffee currently
shows significantly the best accuracy. Furthermore, the
PRALINE method allows the combination of the lo-
cal–global strategy with profile pre-processing, such
that biasing alignments with local motifs can be com-
plemented with information from the other sequences
at each step of the progressive alignment.

6.8. Performance of PRALINE

The PRALINE approach is relatively slow when
used with profile pre-processing. Whereas two full
rounds of N(N−1)/2 pair-wise alignment are per-
formed for pre-processing, and a total of (N−2)(N−
3)/2 profile alignments during progressive alignment
(with N the number of sequences), T-Coffee and
ClustalW only require one round of pair-wise alignment
for the guide tree and N−2 further alignments during
building the multiple alignment. Although the iterative
strategies in PRALINE enhance the alignment accu-
racy, they can slow down the method considerably
depending on the number of iterations, which can be
significant for large-scale alignment projects. Given the
ability of the PRALINE method to compile alignments
with very high quality, further work will be geared at a
priori alignment characterisation aimed at taking the
optimal strategy for the case at hand, and parallelisa-
tion of the code to speed up the pair-wise alignment
stage. A webserver of the current implementation is
available at http://mathbio.nimr.mrc.ac.uk
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