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1 Pseudoknot removal by an optimization approach

1.1 Modification of Nussinov-Jacobson algorithm

The original Nussinov-Jacobson algorithm (Nussinov and Jacobson 1980) calculates an
RNA secondary structure containing the maximum number of base pairs, where GC and AU
base pairs are allowed (optionally GU base pairs and loop-size restrictions can be added).
By restricting this algorithm to the base pairs in the knotted structure it calculates a nested
structure containing the maximum number of base pairs (Ponty 2006). The algorithm
consists of two stages: a fill stage in which the number of base pairs in the optimal solution
is calculated, and a traceback stage in which an actual optimal structure is calculated.
In case multiple optimal solutions exist, the implementation of the traceback procedure
determines which structure will be returned. In pseudocode the algorithm looks like this:

FUNCTION fill(seq_len, basepairs):
# return a square two-dimensional matrix of size seq_len containing
# the maximum number of base pairs between positions i and j
# seq_len is integer, specifying the length of the RNA sequence
# basepairs is a list of base pairs, e.g. [(1,10),(2,9),(4,12)]

* create a 2D matrix M of size seq_len filled with zeros
* traverse each position (i,j) in M (0<=j<seq_len, j-1>=i>=0)
# i is the upstream and j the downstream position in the sequence
# M(0,0) is the upper left corner of the matrix
* for (i,j) calculate the number of base pairs as the maximum of

M(i+1,j) # i unpaired
M(i,j-1) # j unpaired
M(i+1,j-1)+1 if (i,j) is a base pair in the given structure
M(i,k) + M(k+1,j) for each int k (i+1<=k<j-1) # bifurcation

* return matrix M

FUNCTION traceback(m, i, j, basepairs):
# Return an optimal nested structure for matrix position (i,j)
# M is the filled matrix as returned by the fill procedure
# i, j are the coordinates of the cell where the traceback should start
# basepairs is a list of base pairs, same as in fill procedure

* if M(i,j) equals 0 return the empty set
* otherwise, if (i,j) is in basepairs and M(i,j) equals M(i+1,j-1)+1
return the union of set([(i,j)]) and traceback(M,i+1,j-1,basepairs)

* otherwise, for each int k (where i<=k<j)
return union of traceback(M,i,k,basepairs) and traceback(M,k+1,j,basepairs)
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Of course one should make sure that for all base pairs (i,j) in the list i < j. The
algorithm has been implemented in our Python module available from the PyCogent project
or the website (www.ibi.vu.nl/programs/k2nwww). The modification of the Nussinov-
Jacobson algorithm has several disadvantages:

• Only one optimal solution is calculated, even though multiple optimal solutions might
exist.

• This procedure is inefficient: it works fine for small lists of base pairs, but the running
time gets out of hand for larger structures. Therefore the method is not available
trough the web interface.

• Maximizing the number of base pairs is just one criterion that could be optimized,
but there are many other options. It might be biologically relevant to incorporate
sequence or alignment information (for example, think about a score for the conser-
vation of a helix). In addition, this procedure can only score one base pair at the
time, not a whole helix.

To overcome these limitations, we have implemented an new optimization approach which
will be described below.

1.2 An optimization approach that calculates all optimal solutions

We have developed and implemented an optimization approach that calculates all optimal
nested structures under an arbitrary score function. Any score function can be used as
long as the scores are additive. The function can either maximize or minimize some value.
Our method is quite efficient, because it treats paired regions as a unit (see Main Text)
and it takes several other precautions to reduce the number of calculations, which will be
explained below.

In addition to the optimization routine that calculates all optimal structures (OA) we
provide two helper functions in case a user needs a single nested structure. OSR returns
a single optimal solution at random, OSP returns a sinlge solution by comparing some
(biological) properties of the optimal solutions. Two optimization criteria are implemented:
maximizing the number of base pairs (BPS), maximizing the number of hydrogen bonds
(HB) (a GC pair has three hydrogen bonds, AU and GU pairs have two) (Mathews et al.
1999).

The overall procedure followed by the OA method can be described as follows:

FUNCTION optimize_all(basepairs):
* break the base pairs up into paired regions
* separate non-conflicting regions from conflicting regions
* the initial single solution is the structure containing all
non-conflicting regions



Supplementary Material for RNA pseudoknot removal Smit et al. – 3

* for each clique of mutually conflicting paired regions
calculate all optimal solutions and merge each one with
each already existing solution to create a new set of optimal
solutions

For each set of mutually conflicting paired regions (or knot-component) a dynamic
programming search matrix is filled.

FUNCTION dp_matrix(paired_regions, goal, scoring_function):
# return a filled DP search matrix.
# Each cell should contain all optimal solutions from position i to j.
# paired_regions (prs for short) is a set of pseudoknotted regions
# goal is maximize or minimize
# scoring_function is a function that returns a score for a paired region

* pre-calculate the score of each paired region using the scoring function
* the size S of the matrix is 2 times the number of paired regions
* create a matrix M with S rows and columns
* initialize each cell with the list of empty solutions
* map the start and end positions of the regions such that each
index in the matrix corresponds to a start or end position

* iterate over each cell (i,j) in M (0<=j<S, j-1>.=i>=0)
* in each cell (i,j) store the set of all optimal solutions
from the following options:
# what is "optimal" depends on the goal
-- each solution in M(i,j-1)
-- each solution in M(i+1,j)
-- If i and j correspond to the start and end of the same

paired region: all solutions in M(i+1,j-1) merged with
the region starting at i and ending at j

-- For each solution in M(i,j-1) and each solution in M(i+1,j)
if both solutions are disjoint: the merge of M(i,j-1) and M(i+1,j)

-- For each solution in M(i,j-1) and each solution in M(i+1,j)
if both solutions are NOT disjoint: merge each solution
M(i,k) with each solution in M(k+1,j) for each relevant k

* return matrix M

The exact details of the procedure can be found in the source code available under the
PyCogent project in SourceForge.
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In normal English the description above reads as follows:
The number of paired regions in an RNA structure can be very large, and many regions

will not conflict with other regions. Therefore, the optimization approach starts by adding
non-conflicting regions to the solution, and splitting the conflicting regions into groups
of mutually conflicting regions (a.k.a. knot-components Rødland (2006)). For example,
suppose a set of regions is organized in the following order (where the prime indicates the
downstream half of a region): ABCC’DD’A’B’EFGF’E’G’. In this example, region C and
D are not involved in any conflict, so they will be part of the nested structure. Conflicting
regions A and B would be in one group, and mutually conflicting regions E, F, and G would
be in another group. For each knot-component the regions that should become part of the
nested structure are calculated in a dynamic programming matrix.

The number of cells in each DP matrix is the number of given paired regions times two,
because there is one row and column for each start and end point of each region. Only the
top-right half of the matrix will be filled. A row index is referred to as i, a column index
is referred to as j. The matrix is initialized on the diagonal (where i == j) with a list
containing an empty solution. A list is used because we keep track of all possible optimal
choices. For each cell (i, j) where j > i we collect all the candidate-solutions as follows.

1. Add all solutions of the cell to the left, which contains the best solutions for the area
from start point i to end point j − 1.

2. Add all solutions of the cell to the bottom, which contains the best solutions for the
area from start point i + 1 to end point j.

3. If there is a region ranging exactly from i to j (in other words, i and j correspond
to the start and end point of the same paired region), add all possible solutions from
the cell to the bottom-left plus this region. The cell to the bottom-left contains the
optimal solutions for the area from start point i + 1 to end point j − 1.

4. If the lists of solutions at the cells to the left and below both differ from the empty
solution, we need to perform several additional tests:

(a) For each combination of a solution in the left cell and a solution in the right
cell, calculate the highest end point of the solution in the left cell and the lowest
start point for the cell below. In a collection of paired regions, every region has
an end point, and the highest end point is the largest number in the list of all
end points. The lowest start point is identified in a similar way.

(b) If the highest end point is lower than the lowest start point, it means both
solutions are disjoint and can be added to form a better solution. Thus, merge
the two solutions and add them to the list of candidate solutions.

(c) Otherwise, the solutions are not disjoint, but, because of the pseudoknots, sub-
solutions of the two solutions might be combined to form a better solution.
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Create a slider (k) that runs from the lowest start point minus one to the
highest end point plus one. For each combination of cells (i, k) and (k + 1, j),
merge all possible solutions and add them to the list of candidate solutions.

5. Store in cell (i, j) all solutions that are optimal for the given scoring function and
goal. For efficiency reasons the score for each paired region is pre-calculated at the
beginning of the function. There might be multiple optimal solutions among the
candidate solutions.

6. Finish the calculation when the top-right cell in the matrix is filled. This cell contains
the optimal solutions for the given set of paired regions.

1.3 Efficiency comparison

We compared the running time of optimizing the number of base pairs with the modifica-
tion of the Nussinov-Jacobson algorithm (NR = nussinov restricted) and our optimization
algorithm (OA). Before the calculation, we have improved the efficiency of the NR algo-
rithm by making it renumber the structures such that unpaired bases do not take up space
in the matrix. We applied the algorithms to the selection of canonical base pairs for five
crystal structures. The calculations were done on a Mac 2.16 GHz Intel Core Duo with
1GB RAM. The running times on these five different structures with varying sequence
lengths and number of base pairs are listed in the following table:

PDB ID Seq len # pairs NR (CPU sec) OA (CPU sec) Speed-up
1U8D 67 23 0.488 0.387 1.26
2NOQ 190 51 2.884 0.384 7.51
2A64 298 89 2.631 0.387 6.80
2AVY 1530 450 290.652 0.646 449.93
2AW4 2841 821 1749.919 365.683 4.79

On the three shorter sequences the speed-up of the OA method compared to the NR
algorithm is significant, but all running times are extremely short, which makes it less
urgent. On the 16S rRNA structure (2AVY) the improvement in running time very large,
showing that the OA method is very efficient on long structures with relative simple knot-
components, where the NR method has to work its way through every base pair, even
those not involved in pseudoknots. The OA algorithm needs much more time to digest the
large knot-component (involving 80 paired regions and 279 base pairs) in the rRNA large
subunit (2AW4), but it runs still almost five times faster than the NR method. For the
average user a running time of 6 minutes is more acceptable than 30 minutes. In addition,
the users obtains all optimal solutions in this shorter time.
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2 Additional information about the heuristic approaches

2.1 Circular removal in conflict-elimination methods

Circular removal, leading to unsaturated nested structures, can occur both in the EC and
the EG method. An example of circular removal would be that region A (which conflicts
with B and C) is removed, and all of its conflicts (B and C) are removed in the downstream
process, which leads in the end to region A being eliminated even though it does not conflict
with any region in the nested structure. Therefore, both the EC and EG methods add these
eliminated non-conflicting regions back into the list of paired regions, starting at the 5’ end.
By monitoring the process in a large collection of artificial RNA structures we found that
the circular-removal problem occurs more often in the EG methods.

3 Supplementary Discussion

3.1 Artificial structures

We compared the behavior of the different pseudoknot elimination methods on sets of
randomly generated RNA structures, in which we varied the lengths of the sequences and
the number of paired regions. We observed several clear trends over our data (Table
1). First, all the heuristics are unique, in that they produce different results on at least
some structures. In general, the incremental methods produced a more diverse set of
solutions, while the two conflict elimination methods more often find the same solution
than different solutions. For example, in 1000 knotted structures, in which ten paired
regions are embedded in a sequence of length 250, the three conflict elimination approaches
found a different nested structure for 34% of the knotted structures. The incremental
heuristics found different solutions for 51% of the knotted structures. Finally, for 0.8%
of the knotted structures, each of the heuristics found a distinct solution. The difference
in behavior is illustrated in Figure 1 (main text), where all heuristics generate a different
nested structure. In this specific example, the EG method found the same solution as
the OA approach, although in other situations the EG method might find a non-optimal
structure and other methods might find an optimal solution.

For many structures multiple optimal solutions (as found by the OA method maximizing
the number of base pairs) exist, and several heuristics typically find an optimal solution for
a given structure, although these optimal solutions often differ. In almost 97% of the less
complex knotted structures that contained ten paired regions, at least one of the heuristics
found a solution of optimal length. However, when the complexity of the pseudoknots
increases, it becomes increasingly difficult for the heuristics to find an optimal solution.
The EG method is the method that most often found an optimal solution, followed closely
by the EC and IL methods. The results clearly demonstrated that the IR and IO methods
are not designed to keep the maximum number of base pairs.



Supplementary Material for RNA pseudoknot removal Smit et al. – 7

3.2 Biological structures

We studied the behavior of the different pseudoknot elimination methods on two different
collections of base pairs, extracted from eleven X-ray crystal structures (see Material and
Methods). One was the set of canonical base pairs, the other the collection of canonical
pairs plus all immediate helix extensions. Table 2 summarizes the results for the canonical
pairs (results were similar for the helix-extension pairs).

Over our database, we found that for many knotted structures a majority of methods
produced the same nested structure, which contained as many base pairs as an optimal
solution found by the OA approach maximizing the number of base pairs. The method
maximizing the number of hydrogen bonds (HB) always found a single optimal solution.
The EC heuristic always produced a solution with the maximum number of base pairs.
Typically, one of the incremental methods found a nested structure containing fewer base
pairs than the optimal structure. For five out of the eleven knotted structures, multiple
optimal solutions (in terms of base pairs) were found. In most structures where a majority
of methods returned the same nested structure, the pairs that were “broken” to obtain a
nested structure agreed with the expert view.

The initial choice of base pairs and the principles behind the different heuristics in-
fluence the nested structure that is found. In addition, several optimal nested structures
might exist for a single knotted structure. The different optimal solutions can be compared
in several ways to determine which of the optimal solutions will be used in the analysis.
These comparisons might include the number, length, or position in the sequence of the
paired regions they contain.
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Supplementary tables

Sequence length 100 100 250 250 500 500 1000 1000
# paired regions 7 10 10 20 10 20 10 20
# structures 1000 1000 1000 1000 1000 1000 1000 1000
AVG # optimal solutions 1.315 1.504 1.235 1.567 1.200 1.368 1.208 1.329
Optimal not found by heur 0.005 0.007 0.020 0.102 0.026 0.126 0.033 0.144
Optimal found by 1 heur 0.021 0.060 0.078 0.225 0.089 0.241 0.083 0.258
Optimal found by >1 heur 0.974 0.933 0.902 0.673 0.885 0.633 0.884 0.598
EC found optimum 0.880 0.802 0.796 0.534 0.802 0.548 0.798 0.562
EG found optimum 0.918 0.890 0.851 0.698 0.830 0.664 0.827 0.647
IO found optimum 0.350 0.229 0.217 0.060 0.235 0.126 0.226 0.053
IL found optimum 0.848 0.783 0.708 0.536 0.677 0.450 0.653 0.410
IR found optimum 0.492 0.401 0.311 0.130 0.297 0.112 0.294 0.104
all ELIM methods diff 0.231 0.344 0.341 0.633 0.308 0.587 0.288 0.577
all ELIM methods same 0.769 0.656 0.659 0.367 0.692 0.413 0.712 0.423
all INC methods diff 0.307 0.517 0.513 0.856 0.517 0.843 0.513 0.841
all INC methods same 0.147 0.069 0.063 0.008 0.053 0.005 0.052 0.006
all HEUR diff 0.000 0.004 0.008 0.143 0.013 0.148 0.006 0.165
all HEUR same 0.136 0.054 0.045 0.002 0.036 0.005 0.039 0.002

Table 1: Performance of each method on artificial RNA structures. Each column in the
table describes one set of structures of a particular size. Each row in the table reports a
specific statistic of a run. The top part of the table specifies the length of the sequence
and the number of paired regions in that sequence, and the number of knotted structures
generated in that run. The second part specifies the average number of optimal solutions,
containing the maximum number of base pairs, that was found by the OA approach (AVG
# optimal solutions) and how often a solution of that length was found by a heuristic. The
third part specifies for each method separately how likely it was to find a solution with
the maximum number of base pairs. The bottom part of the table describes how often
particular groups of methods returned the same solution (ELIM = EC and EG, INC = IO,
IL, and IR, HEUR = EC, EG, IO, IL, and IR).
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Description Nested structures Comment
Phe-tRNA 1 (20 bps) EC,EG,IO,IL,IR

D-loop/T-loop interaction removed.PDB: 1EHZ BPS,HB
L:76, BPS:23
16S rRNA 1 (439 bps) EC,BPS PKB64 (short-range in 1,

long-range in 2), PKB65, and
PKB129 broken, plus two
long-range interactions.
D12=0.982, D13=0.935, D23=0.953.

PDB: 2AVY 2 (439 bps) EG,IL,IR,BPS,HB
L:1530, BPS:450 3 (428 bps) IO

23S rRNA 1 (788 bps) EC,EG,IL,BPS,HB All, but one, removed regions (> 1
bp) matched knots found by
comparative sequence analysis, e.g.
PKB 148 broken. Also, many single
bp long-range interactions broken.
D12=0.994, D13=0.942, D23=0.936.

PDB: 2AW4 2 (787 bps) IR
L:2841, BPS:821 3 (765 bps) IO

A-riboswitch 1 (22 bps) EC,EG,IO,IL,BPS Both nested structures: interaction
between L2 and L3 broken (2 bps),
plus one of two base triples.
D12=0.913.

PDB: 1Y26 2 (22 bps) IR,BPS,HB
L:71, BPS:25

G-riboswitch 1 (20 bps) EC,EG,IO,IL,BPS Both nested structures: interaction
between L2 and L3 broken (2 bps),
plus one of two base triples.
D12=0.905.

PDB: 1U8D 2 (20 bps) IR,BPS,HB
L:67, BPS:23

SAM-riboswitch 1 (27 bps) EC,EG,IO,IL,IR
Interaction between L2 and J3/4
removed.

PDB: 2GIS BPS,HB
L:94, BPS:29
HDV ribozyme 1 (14 bps) EC,EG,IO,IL,IR

P2 (6 bps) and interaction between
J1/4 and L3 (2 bps) broken.

PDB: 1DRZ BPS,HB
L:72, BPS:22
DA ribozyme 1 (15 bps) EC,EG,IL,BPS,HB Struct. 1: G1G2&C26C25 and

A3G4&U45C44 broken. Struct. 2:
A3G4&U45C44 and helix II
broken. D12=0.647.

PDB: 1YKV 2 (14 bps) IO,IR
L:49, BPS:19

Group I intron 1 (44 bps) EG,IO,IL,BPS,HB P3 and P7 in knot. Struct. 1: P7
broken, struct. 2: P3 broken,
because P7 spans shorter range.
D12=0.760.

PDB: 1ZZN 2 (44 bps) EC,IR,BPS
L:197, BPS:50

RNaseP 1 (82 bps) EC,IR,BPS,HB Struct. 1: P2 broken (6 bps);
Struct. 2: P4 broken (7 bps), both:
long-range interaction between
J3/4 and J19/4 broken (1 bp).
D12=0.852.

PDB: 2A64 2 (81 bps) EG,IO,IL
L:298, BPS:89

CrPV IRES 1 (36 bps) EC,EG,IR,BPS,HB Struct 1: PKII, PKIII and 3’ side
of PKI broken, Struct. 2: PKII,
PKIII, 5’ side PKI broken, Struct.
3: P2.2, PKII, 3’ PKI. D12=0.756,
D13=0.683, D23=0.500.

PDB: 2NOQ 2 (36 bps) BPS
L:190, BPS:51 3 (33 bps) IO,IL
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Table 2: Pseudoknot removal in biological structures. The data shown in the table is
for the set of canonical base pairs extracted from eleven crystal structures. The column
“Description” contains a short description of the molecule, the PDB ID, the length (L)
and the number of base pairs in the initial knotted structure (BPS). The “Nested struc-
tures” column reports for each unique solution how many base pairs it contained (between
parentheses) and by which methods it was found (BPS is the OA method maximizing the
number of base pairs, HB is the OA method maximizing the number of hydrogen bonds).
The “Comment” column reports which paired regions were removed when compared to
the literature (Shi and Moore 2000; Holbrook 2005; Schuwirth et al. 2005; Cannone et al.
2002; van Batenburg et al. 2000; Serganov et al. 2004; Batey et al. 2004; Montange and
Batey 2006; Ferré-D’Amaré et al. 1998; Serganov et al. 2005; Stahley and Strobel 2005;
Kazantsev et al. 2005; Schüler et al. 2006). In case of multiple solutions, this column also
contains the distance between two structures. D12 means the distance between structure 1
and 2. The distance measure is the number of base pairs common to both structures (i.e.
the intersection) divided by the number of base pairs that is in one or the other structure
(i.e. the union).
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